可持续高性能锂离子电池中再生硅的等离子体增强空位工程

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-04-01 DOI:10.1016/j.ensm.2025.104231
Dingyi Zhang , Hong Gao , Jiayi Li , Yiwen Sun , Zeshen Deng , Xinyao Yuan , Congcong Li , Tianxiao Chen , Xingwang Peng , Chao Wang , Yi Xu , Lichun Yang , Xin Guo , Yufei Zhao , Peng Huang , Yong Wang , Guoxiu Wang , Hao Liu
{"title":"可持续高性能锂离子电池中再生硅的等离子体增强空位工程","authors":"Dingyi Zhang ,&nbsp;Hong Gao ,&nbsp;Jiayi Li ,&nbsp;Yiwen Sun ,&nbsp;Zeshen Deng ,&nbsp;Xinyao Yuan ,&nbsp;Congcong Li ,&nbsp;Tianxiao Chen ,&nbsp;Xingwang Peng ,&nbsp;Chao Wang ,&nbsp;Yi Xu ,&nbsp;Lichun Yang ,&nbsp;Xin Guo ,&nbsp;Yufei Zhao ,&nbsp;Peng Huang ,&nbsp;Yong Wang ,&nbsp;Guoxiu Wang ,&nbsp;Hao Liu","doi":"10.1016/j.ensm.2025.104231","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon, renowned for its exceptional theoretical capacity, is a promising lithium-ion battery (LIB) anode material, yet its practical application is hindered by severe lithiation-induced volume expansion, structural instability, and high production costs. This study introduces a sustainable strategy to address these challenges by repurposing recycled photovoltaic (PV) silicon through a plasma-assisted vacancy engineering approach. By combining dielectric barrier discharge plasma-assisted milling with bismuth (Bi) modification, controlled vacancy defects are introduced into silicon microparticles, enhancing ion transport and mitigating internal stress. Bi further stabilizes the anode by absorbing mechanical stress and facilitating lithium-ion accommodation at vacancy sites. The resulting plasma induced silicon/carbon/bismuth composite demonstrates outstanding cycling stability and high-rate performance, retaining 1442 mA h g⁻¹ after 300 cycles at 0.5 A g⁻¹ and 525 mA h g⁻¹ after 1000 cycles at 7 A g⁻¹. This scalable and eco-friendly method not only overcomes the inherent limitations of silicon anodes but also transforms PV waste into high-performance LIB materials, advancing sustainable energy storage technologies.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104231"},"PeriodicalIF":20.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-enhanced vacancy engineering for sustainable high-performance recycled silicon in lithium-ion batteries\",\"authors\":\"Dingyi Zhang ,&nbsp;Hong Gao ,&nbsp;Jiayi Li ,&nbsp;Yiwen Sun ,&nbsp;Zeshen Deng ,&nbsp;Xinyao Yuan ,&nbsp;Congcong Li ,&nbsp;Tianxiao Chen ,&nbsp;Xingwang Peng ,&nbsp;Chao Wang ,&nbsp;Yi Xu ,&nbsp;Lichun Yang ,&nbsp;Xin Guo ,&nbsp;Yufei Zhao ,&nbsp;Peng Huang ,&nbsp;Yong Wang ,&nbsp;Guoxiu Wang ,&nbsp;Hao Liu\",\"doi\":\"10.1016/j.ensm.2025.104231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon, renowned for its exceptional theoretical capacity, is a promising lithium-ion battery (LIB) anode material, yet its practical application is hindered by severe lithiation-induced volume expansion, structural instability, and high production costs. This study introduces a sustainable strategy to address these challenges by repurposing recycled photovoltaic (PV) silicon through a plasma-assisted vacancy engineering approach. By combining dielectric barrier discharge plasma-assisted milling with bismuth (Bi) modification, controlled vacancy defects are introduced into silicon microparticles, enhancing ion transport and mitigating internal stress. Bi further stabilizes the anode by absorbing mechanical stress and facilitating lithium-ion accommodation at vacancy sites. The resulting plasma induced silicon/carbon/bismuth composite demonstrates outstanding cycling stability and high-rate performance, retaining 1442 mA h g⁻¹ after 300 cycles at 0.5 A g⁻¹ and 525 mA h g⁻¹ after 1000 cycles at 7 A g⁻¹. This scalable and eco-friendly method not only overcomes the inherent limitations of silicon anodes but also transforms PV waste into high-performance LIB materials, advancing sustainable energy storage technologies.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"77 \",\"pages\":\"Article 104231\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725002314\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硅以其卓越的理论容量而闻名,是一种很有前途的锂离子电池(LIB)负极材料,但其实际应用受到锂化引起的严重体积膨胀、结构不稳定和高生产成本的阻碍。本研究介绍了一种可持续的策略,通过等离子体辅助的空位工程方法,重新利用回收的光伏(PV)硅来解决这些挑战。将介质阻挡放电等离子体辅助铣削与铋修饰相结合,在硅微粒中引入可控空位缺陷,增强离子输运,减轻内应力。铋通过吸收机械应力和促进锂离子在空位位置的安置来进一步稳定阳极。由此产生的等离子体诱导硅/碳/铋复合材料显示出出色的循环稳定性和高速率性能,在0.5 A g⁻¹的300次循环后保持1442 mA h⁻¹,在7 A g⁻¹的1000次循环后保持525 mA h⁻¹。这种可扩展且环保的方法不仅克服了硅阳极的固有局限性,而且还将光伏废弃物转化为高性能LIB材料,推动了可持续能源存储技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma-enhanced vacancy engineering for sustainable high-performance recycled silicon in lithium-ion batteries
Silicon, renowned for its exceptional theoretical capacity, is a promising lithium-ion battery (LIB) anode material, yet its practical application is hindered by severe lithiation-induced volume expansion, structural instability, and high production costs. This study introduces a sustainable strategy to address these challenges by repurposing recycled photovoltaic (PV) silicon through a plasma-assisted vacancy engineering approach. By combining dielectric barrier discharge plasma-assisted milling with bismuth (Bi) modification, controlled vacancy defects are introduced into silicon microparticles, enhancing ion transport and mitigating internal stress. Bi further stabilizes the anode by absorbing mechanical stress and facilitating lithium-ion accommodation at vacancy sites. The resulting plasma induced silicon/carbon/bismuth composite demonstrates outstanding cycling stability and high-rate performance, retaining 1442 mA h g⁻¹ after 300 cycles at 0.5 A g⁻¹ and 525 mA h g⁻¹ after 1000 cycles at 7 A g⁻¹. This scalable and eco-friendly method not only overcomes the inherent limitations of silicon anodes but also transforms PV waste into high-performance LIB materials, advancing sustainable energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Functional Nanocellulose-Enabled Microphase-Separated Gel Polymer Electrolytes for High-Performance Flexible Zinc-Air Batteries Hard Carbon Anodes for All-Solid-State Na-Ion Batteries Tailoring Surface Entropy Gradient towards 4.6 V Ultrahigh-Nickel Cathodes with Durable Cationic and Anionic Redox Failure mechanisms and current collector design for sodium metal anodes: from thermodynamic-kinetic coupling to structural-functional optimization Engineering a Synergistic La-MOF-OH/PEO Interfacial Layer Toward High-Performance All-Solid-State Sodium Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1