基于多频PMUT阵列的神经网络增强彩色光声成像

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2025-04-05 DOI:10.1016/j.sna.2025.116532
Teng Zhang, Ashwin A. Seshia
{"title":"基于多频PMUT阵列的神经网络增强彩色光声成像","authors":"Teng Zhang,&nbsp;Ashwin A. Seshia","doi":"10.1016/j.sna.2025.116532","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates colored photoacoustic imaging (PAI) scan by integrating a neural-network image classification algorithm with a multi-frequency Piezoelectric Micromachined Ultrasound Transducer (PMUT) array. Fabricated on an AlN-on-SOI platform, the PMUT array features 133 (19 × 7), 196 (28 × 7), and 246 (41 × 6) transducers of distinctive designs, targeting under-liquid resonant frequencies of 760 kHz, 1.17 MHz, and 1.65 MHz respectively. This multi-frequency capability broadens the range of detectable photoacoustic signals, enhancing sensitivity to variations in acoustic responses associated with the heat absorption properties of different colored targets. The neural network, initially trained on extensive datasets from stationary colored pencil leads, achieved over 99 % accuracy in color classification. When integrated with a 2D scanning and image reconstruction system, this setup enabled comprehensive color PAI scans of phantoms embedded with colored pencil leads in random sequences. These advancements extend PAI’s diagnostic capabilities beyond that of traditional ultrasound transducers, offering enhanced resolution and further insights into structural materials including biomedical applications.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"389 ","pages":"Article 116532"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network-enhanced color photoacoustic imaging using multi-frequency PMUT array\",\"authors\":\"Teng Zhang,&nbsp;Ashwin A. Seshia\",\"doi\":\"10.1016/j.sna.2025.116532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates colored photoacoustic imaging (PAI) scan by integrating a neural-network image classification algorithm with a multi-frequency Piezoelectric Micromachined Ultrasound Transducer (PMUT) array. Fabricated on an AlN-on-SOI platform, the PMUT array features 133 (19 × 7), 196 (28 × 7), and 246 (41 × 6) transducers of distinctive designs, targeting under-liquid resonant frequencies of 760 kHz, 1.17 MHz, and 1.65 MHz respectively. This multi-frequency capability broadens the range of detectable photoacoustic signals, enhancing sensitivity to variations in acoustic responses associated with the heat absorption properties of different colored targets. The neural network, initially trained on extensive datasets from stationary colored pencil leads, achieved over 99 % accuracy in color classification. When integrated with a 2D scanning and image reconstruction system, this setup enabled comprehensive color PAI scans of phantoms embedded with colored pencil leads in random sequences. These advancements extend PAI’s diagnostic capabilities beyond that of traditional ultrasound transducers, offering enhanced resolution and further insights into structural materials including biomedical applications.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"389 \",\"pages\":\"Article 116532\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725003383\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725003383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究将神经网络图像分类算法与多频压电微机械超声换能器(PMUT)阵列相结合,研究彩色光声成像(PAI)扫描。捏造一个AlN-on-SOI平台,PMUT数组特性133(19 × 7),196(28 × 7),和246年(41 × 6)传感器的独特设计,针对under-liquid共振频率760 kHz, 1.17 兆赫和1.65分别 MHz。这种多频能力扩大了可探测光声信号的范围,提高了对不同颜色目标的热吸收特性相关的声响应变化的灵敏度。神经网络最初在固定彩色铅笔芯的大量数据集上进行训练,在颜色分类方面达到了99% %以上的准确率。当与2D扫描和图像重建系统集成时,该装置可以对随机顺序嵌入彩色铅笔芯的幽灵进行全面的彩色PAI扫描。这些进步将PAI的诊断能力扩展到传统超声换能器之外,提供更高的分辨率和对包括生物医学应用在内的结构材料的进一步了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network-enhanced color photoacoustic imaging using multi-frequency PMUT array
This study investigates colored photoacoustic imaging (PAI) scan by integrating a neural-network image classification algorithm with a multi-frequency Piezoelectric Micromachined Ultrasound Transducer (PMUT) array. Fabricated on an AlN-on-SOI platform, the PMUT array features 133 (19 × 7), 196 (28 × 7), and 246 (41 × 6) transducers of distinctive designs, targeting under-liquid resonant frequencies of 760 kHz, 1.17 MHz, and 1.65 MHz respectively. This multi-frequency capability broadens the range of detectable photoacoustic signals, enhancing sensitivity to variations in acoustic responses associated with the heat absorption properties of different colored targets. The neural network, initially trained on extensive datasets from stationary colored pencil leads, achieved over 99 % accuracy in color classification. When integrated with a 2D scanning and image reconstruction system, this setup enabled comprehensive color PAI scans of phantoms embedded with colored pencil leads in random sequences. These advancements extend PAI’s diagnostic capabilities beyond that of traditional ultrasound transducers, offering enhanced resolution and further insights into structural materials including biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
Synergistic effect of silver nanoparticles and carbon nanotubes in flexible composite films for boosted photothermoelectric properties An inverse-magnetostrictive force sensor with optimized bias magnetic field configuration and signal conditioning Phased array ultrasound transducer based on high-performance Mn-doped BS-PT ceramics for low-intensity focused ultrasound applications Magnetic helical micro/nanomachines: Recent advances in functionalization, driving control, and biomedical applications Low-noise AC current measurement with a single-element magnetoresistive sensor and lock-in amplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1