一种带梯度谐振腔的水库用宽带地震超材料

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2025-03-30 DOI:10.1016/j.physleta.2025.130505
Jingmei Tan , Pengcheng Ma , Boyang Zhang , Keke Yuan , Hongwu Yang , Qiujiao Du
{"title":"一种带梯度谐振腔的水库用宽带地震超材料","authors":"Jingmei Tan ,&nbsp;Pengcheng Ma ,&nbsp;Boyang Zhang ,&nbsp;Keke Yuan ,&nbsp;Hongwu Yang ,&nbsp;Qiujiao Du","doi":"10.1016/j.physleta.2025.130505","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic fortification of reservoirs is crucial for ensuring the safety of both the reservoir structures and surrounding communities. Metamaterials offer an innovative approach to earthquake prevention and disaster mitigation by controlling or attenuating seismic waves in mountainous regions. In this paper, we present a local resonance-type gradient seismic metamaterial (LRGSM) to attenuate body waves and surface waves across a broad frequency range. The propagation performance of seismic waves through the finite LRGSM system is investigated by using the finite element method. The transmission spectrum and displacement fields of the LRGSM under compression and shear waves incidence are analyzed to validate its broadband attenuation capabilities from 9.03 Hz to 15.00 Hz. Notably, this design is extended to the half-space model, demonstrating the same attenuation effect of Rayleigh waves as observed for body waves. The findings confirm that the LRGSM effectively generates a same attenuation zone, thereby effectively protecting reservoirs.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"545 ","pages":"Article 130505"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A broadband seismic metamaterial with gradient resonators for earthquake-proofing reservoirs\",\"authors\":\"Jingmei Tan ,&nbsp;Pengcheng Ma ,&nbsp;Boyang Zhang ,&nbsp;Keke Yuan ,&nbsp;Hongwu Yang ,&nbsp;Qiujiao Du\",\"doi\":\"10.1016/j.physleta.2025.130505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seismic fortification of reservoirs is crucial for ensuring the safety of both the reservoir structures and surrounding communities. Metamaterials offer an innovative approach to earthquake prevention and disaster mitigation by controlling or attenuating seismic waves in mountainous regions. In this paper, we present a local resonance-type gradient seismic metamaterial (LRGSM) to attenuate body waves and surface waves across a broad frequency range. The propagation performance of seismic waves through the finite LRGSM system is investigated by using the finite element method. The transmission spectrum and displacement fields of the LRGSM under compression and shear waves incidence are analyzed to validate its broadband attenuation capabilities from 9.03 Hz to 15.00 Hz. Notably, this design is extended to the half-space model, demonstrating the same attenuation effect of Rayleigh waves as observed for body waves. The findings confirm that the LRGSM effectively generates a same attenuation zone, thereby effectively protecting reservoirs.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"545 \",\"pages\":\"Article 130505\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125002865\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125002865","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水库的抗震加固对于确保水库结构和周围社区的安全至关重要。超材料通过控制或衰减山区地震波,为防震减灾提供了一种创新方法。本文介绍了一种局部共振型梯度地震超材料 (LRGSM),可在较宽的频率范围内衰减体波和面波。我们采用有限元法研究了地震波在有限 LRGSM 系统中的传播性能。分析了 LRGSM 在压缩波和剪切波入射下的传输谱和位移场,验证了其在 9.03 Hz 至 15.00 Hz 范围内的宽带衰减能力。值得注意的是,该设计扩展到了半空间模型,证明了瑞利波的衰减效果与体波相同。研究结果证实,LRGSM 能有效地产生相同的衰减区,从而有效地保护水库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A broadband seismic metamaterial with gradient resonators for earthquake-proofing reservoirs
Seismic fortification of reservoirs is crucial for ensuring the safety of both the reservoir structures and surrounding communities. Metamaterials offer an innovative approach to earthquake prevention and disaster mitigation by controlling or attenuating seismic waves in mountainous regions. In this paper, we present a local resonance-type gradient seismic metamaterial (LRGSM) to attenuate body waves and surface waves across a broad frequency range. The propagation performance of seismic waves through the finite LRGSM system is investigated by using the finite element method. The transmission spectrum and displacement fields of the LRGSM under compression and shear waves incidence are analyzed to validate its broadband attenuation capabilities from 9.03 Hz to 15.00 Hz. Notably, this design is extended to the half-space model, demonstrating the same attenuation effect of Rayleigh waves as observed for body waves. The findings confirm that the LRGSM effectively generates a same attenuation zone, thereby effectively protecting reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Local group velocity distribution inside superradiant condensates On fully entangled fraction of arbitrary d⊗d quantum states Editorial Board Study of quasi-one-dimensional Dzyaloshinskii-Moriya interaction in half-monolayer Mn adsorbed stanene Electrical discharge assisted nitrogen fixation: An alternative to chemical fertilizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1