基于NWP模型和生成扩散模型的降水估计

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-04-05 DOI:10.1029/2024GL110625
Haolin Liu, Jimmy C. H. Fung, Alexis K. H. Lau, Zhenning Li
{"title":"基于NWP模型和生成扩散模型的降水估计","authors":"Haolin Liu,&nbsp;Jimmy C. H. Fung,&nbsp;Alexis K. H. Lau,&nbsp;Zhenning Li","doi":"10.1029/2024GL110625","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in state-of-the-art generative deep-learning models, particularly diffusion models, have significantly enhanced the capability to produce realistic and diverse synthetic images and videos. These advancements have had a profound impact on fields such as computer vision and natural language processing. In this study, we leverage this cutting-edge generative model to refine Numerical Weather Prediction (NWP) precipitation outputs. By conditioning the generative model with fundamental meteorological variables simulated by the Weather Research and Forecasting model, we aim to reproduce the high-resolution satellite precipitation product, specifically CMORPH. Benefiting from the superior ability of generative diffusion models to learn the distribution of target data, these models excel in providing detailed and accurate precipitation estimations over the raw NWP outputs and traditional predictive models. With this presented pipeline, we provide valuable insights and practical tools for refining precipitation forecasting while preserving its extremities and variability thus better guiding decision making regarding weather dependent activities.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110625","citationCount":"0","resultStr":"{\"title\":\"Precipitation Estimation With NWP Model and Generative Diffusion Model\",\"authors\":\"Haolin Liu,&nbsp;Jimmy C. H. Fung,&nbsp;Alexis K. H. Lau,&nbsp;Zhenning Li\",\"doi\":\"10.1029/2024GL110625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in state-of-the-art generative deep-learning models, particularly diffusion models, have significantly enhanced the capability to produce realistic and diverse synthetic images and videos. These advancements have had a profound impact on fields such as computer vision and natural language processing. In this study, we leverage this cutting-edge generative model to refine Numerical Weather Prediction (NWP) precipitation outputs. By conditioning the generative model with fundamental meteorological variables simulated by the Weather Research and Forecasting model, we aim to reproduce the high-resolution satellite precipitation product, specifically CMORPH. Benefiting from the superior ability of generative diffusion models to learn the distribution of target data, these models excel in providing detailed and accurate precipitation estimations over the raw NWP outputs and traditional predictive models. With this presented pipeline, we provide valuable insights and practical tools for refining precipitation forecasting while preserving its extremities and variability thus better guiding decision making regarding weather dependent activities.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110625\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL110625\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL110625","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近在最先进的生成深度学习模型,特别是扩散模型方面的进展,显著增强了生成逼真和多样化合成图像和视频的能力。这些进步对计算机视觉和自然语言处理等领域产生了深远的影响。在本研究中,我们利用这种尖端的生成模型来改进数值天气预报(NWP)降水输出。通过将天气研究与预报模型模拟的基本气象变量调节生成模型,我们的目标是再现高分辨率卫星降水产品,特别是CMORPH。得益于生成扩散模型学习目标数据分布的优越能力,这些模型在提供原始NWP输出和传统预测模型的详细和准确的降水估计方面表现出色。有了这个管道,我们提供了有价值的见解和实用的工具来改进降水预报,同时保留其极值和变异性,从而更好地指导有关天气依赖活动的决策制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precipitation Estimation With NWP Model and Generative Diffusion Model

Recent advancements in state-of-the-art generative deep-learning models, particularly diffusion models, have significantly enhanced the capability to produce realistic and diverse synthetic images and videos. These advancements have had a profound impact on fields such as computer vision and natural language processing. In this study, we leverage this cutting-edge generative model to refine Numerical Weather Prediction (NWP) precipitation outputs. By conditioning the generative model with fundamental meteorological variables simulated by the Weather Research and Forecasting model, we aim to reproduce the high-resolution satellite precipitation product, specifically CMORPH. Benefiting from the superior ability of generative diffusion models to learn the distribution of target data, these models excel in providing detailed and accurate precipitation estimations over the raw NWP outputs and traditional predictive models. With this presented pipeline, we provide valuable insights and practical tools for refining precipitation forecasting while preserving its extremities and variability thus better guiding decision making regarding weather dependent activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Glacial Expansion of Deoxygenation in the Arabian Sea Flocculated Silt, Not Clay, Dominates River Suspended Sediment Load Lake Unloading Drives Fault Slip and Rift Asymmetry in Southern Tibet Complex Networks Reveal Climate Models' Capability in Simulating Global Synchronized Extreme Precipitation Seismological Evidence of Multiple Crustal Magma Reservoirs Beneath Mt. Wrangell in Southcentral Alaska
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1