{"title":"光保护中的非光化学淬灭(NPQ):了解避免光失活和光抑制所需的 NPQ 水平","authors":"Guanqiang Zuo","doi":"10.1111/nph.70121","DOIUrl":null,"url":null,"abstract":"<p>Plant photosynthesis is highly responsive to fluctuations in environmental cues. To achieve optimal photosynthetic performance, plants must accurately regulate light absorption, maintaining a dynamic balance between energy supply and consumption in the field. Understanding the potential damage and imbalances caused by excessive light during photosynthesis necessitates a comprehensive insight into the protective role of non-photochemical quenching (NPQ). This rapid photoprotective mechanism dissipates excess excitation energy as heat and is ubiquitous throughout the plant kingdom. Previous reviews have primarily focused on the regulation of NPQ amplitude, often overlooking its efficiency in photoprotection. This review outlines the significance, components, and mechanisms of NPQ, presenting fundamental equations that quantitatively describe both NPQ amplitude and its protective functions. I highlight the methodological approaches to quantify the NPQ levels necessary to prevent photoinactivation and photoinhibition, respectively. I conclude by identifying key open questions regarding NPQ and suggesting directions for future research.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 5","pages":"1967-1974"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70121","citationCount":"0","resultStr":"{\"title\":\"Non-photochemical quenching (NPQ) in photoprotection: insights into NPQ levels required to avoid photoinactivation and photoinhibition\",\"authors\":\"Guanqiang Zuo\",\"doi\":\"10.1111/nph.70121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant photosynthesis is highly responsive to fluctuations in environmental cues. To achieve optimal photosynthetic performance, plants must accurately regulate light absorption, maintaining a dynamic balance between energy supply and consumption in the field. Understanding the potential damage and imbalances caused by excessive light during photosynthesis necessitates a comprehensive insight into the protective role of non-photochemical quenching (NPQ). This rapid photoprotective mechanism dissipates excess excitation energy as heat and is ubiquitous throughout the plant kingdom. Previous reviews have primarily focused on the regulation of NPQ amplitude, often overlooking its efficiency in photoprotection. This review outlines the significance, components, and mechanisms of NPQ, presenting fundamental equations that quantitatively describe both NPQ amplitude and its protective functions. I highlight the methodological approaches to quantify the NPQ levels necessary to prevent photoinactivation and photoinhibition, respectively. I conclude by identifying key open questions regarding NPQ and suggesting directions for future research.</p>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"246 5\",\"pages\":\"1967-1974\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.70121\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.70121","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Non-photochemical quenching (NPQ) in photoprotection: insights into NPQ levels required to avoid photoinactivation and photoinhibition
Plant photosynthesis is highly responsive to fluctuations in environmental cues. To achieve optimal photosynthetic performance, plants must accurately regulate light absorption, maintaining a dynamic balance between energy supply and consumption in the field. Understanding the potential damage and imbalances caused by excessive light during photosynthesis necessitates a comprehensive insight into the protective role of non-photochemical quenching (NPQ). This rapid photoprotective mechanism dissipates excess excitation energy as heat and is ubiquitous throughout the plant kingdom. Previous reviews have primarily focused on the regulation of NPQ amplitude, often overlooking its efficiency in photoprotection. This review outlines the significance, components, and mechanisms of NPQ, presenting fundamental equations that quantitatively describe both NPQ amplitude and its protective functions. I highlight the methodological approaches to quantify the NPQ levels necessary to prevent photoinactivation and photoinhibition, respectively. I conclude by identifying key open questions regarding NPQ and suggesting directions for future research.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.