Sb掺杂Al-Si/AlN复合相变材料的导热性和可靠性提高

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-04-06 DOI:10.1016/j.solmat.2025.113624
Shuhui Chen , Jinjie Mo , Ziye Ling , Zhengguo Zhang , Xiaoming Fang
{"title":"Sb掺杂Al-Si/AlN复合相变材料的导热性和可靠性提高","authors":"Shuhui Chen ,&nbsp;Jinjie Mo ,&nbsp;Ziye Ling ,&nbsp;Zhengguo Zhang ,&nbsp;Xiaoming Fang","doi":"10.1016/j.solmat.2025.113624","DOIUrl":null,"url":null,"abstract":"<div><div>The propensity for leaks in high-temperature molten alloys greatly restricts their extensive use in storing high-temperature thermal energy. In tackling this matter, the research concentrates on Al-Si/AlN composite phase change materials (PCMs), incorporating the modifier Sb to significantly improve their heat conduction and thermal steadiness. The results reveal that incorporating Sb alters the Si phase from a bulk form to an elongated one, simultaneously triggering the creation of an Al-Si@Al<sub>2</sub>O<sub>3</sub> core-shell configuration. This structural optimization reduces free electron scattering and extends the mean free path of electrons, thereby improving the thermal conductivity of the material. It was established that the ideal fraction of Sb mass is 0.6 %, where the thermal conductivity of the Sb-altered Al-Si/AlN composite PCMs attains 49.5 W/(m·K), marking a 15.2 % enhancement over the original Al-Si/AlN composite PCMs, with a latent heat of 351.5 kJ/kg. Additionally, the creation of the Al<sub>2</sub>O<sub>3</sub> shell led to the altered materials showing remarkable thermal stability across 200 high-temperature thermal cycles, resulting in less than a 4 % decrease in latent heat post-cycle and no leakage detected. The study offers not just an innovative approach for creating advanced Al-Si/AlN composite PCMs but also broadens their use in storing thermal energy at high temperatures.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"287 ","pages":"Article 113624"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sb doped Al-Si/AlN composite phase change material with improved thermal conductivity and reliability\",\"authors\":\"Shuhui Chen ,&nbsp;Jinjie Mo ,&nbsp;Ziye Ling ,&nbsp;Zhengguo Zhang ,&nbsp;Xiaoming Fang\",\"doi\":\"10.1016/j.solmat.2025.113624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The propensity for leaks in high-temperature molten alloys greatly restricts their extensive use in storing high-temperature thermal energy. In tackling this matter, the research concentrates on Al-Si/AlN composite phase change materials (PCMs), incorporating the modifier Sb to significantly improve their heat conduction and thermal steadiness. The results reveal that incorporating Sb alters the Si phase from a bulk form to an elongated one, simultaneously triggering the creation of an Al-Si@Al<sub>2</sub>O<sub>3</sub> core-shell configuration. This structural optimization reduces free electron scattering and extends the mean free path of electrons, thereby improving the thermal conductivity of the material. It was established that the ideal fraction of Sb mass is 0.6 %, where the thermal conductivity of the Sb-altered Al-Si/AlN composite PCMs attains 49.5 W/(m·K), marking a 15.2 % enhancement over the original Al-Si/AlN composite PCMs, with a latent heat of 351.5 kJ/kg. Additionally, the creation of the Al<sub>2</sub>O<sub>3</sub> shell led to the altered materials showing remarkable thermal stability across 200 high-temperature thermal cycles, resulting in less than a 4 % decrease in latent heat post-cycle and no leakage detected. The study offers not just an innovative approach for creating advanced Al-Si/AlN composite PCMs but also broadens their use in storing thermal energy at high temperatures.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"287 \",\"pages\":\"Article 113624\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825002259\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002259","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高温熔融合金的泄漏倾向极大地限制了其在储存高温热能方面的广泛应用。为了解决这一问题,研究集中在Al-Si/AlN复合相变材料(PCMs)上,加入改性剂Sb可以显著改善其热传导和热稳定性。结果表明,加入Sb将Si相从块状形态改变为细长形态,同时触发Al-Si@Al2O3核壳结构的产生。这种结构优化减少了自由电子的散射,延长了电子的平均自由程,从而提高了材料的导热性。结果表明,Sb质量的理想分数为0.6%时,Sb改变的Al-Si/AlN复合PCMs的导热系数达到49.5 W/(m·K),比原Al-Si/AlN复合PCMs的潜热提高了15.2%,潜热为351.5 kJ/kg。此外,Al2O3壳层的形成导致改变后的材料在200个高温热循环中表现出显著的热稳定性,导致循环后潜热下降不到4%,并且没有检测到泄漏。这项研究不仅为制造先进的Al-Si/AlN复合pcm提供了一种创新方法,而且拓宽了它们在高温下储存热能的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sb doped Al-Si/AlN composite phase change material with improved thermal conductivity and reliability
The propensity for leaks in high-temperature molten alloys greatly restricts their extensive use in storing high-temperature thermal energy. In tackling this matter, the research concentrates on Al-Si/AlN composite phase change materials (PCMs), incorporating the modifier Sb to significantly improve their heat conduction and thermal steadiness. The results reveal that incorporating Sb alters the Si phase from a bulk form to an elongated one, simultaneously triggering the creation of an Al-Si@Al2O3 core-shell configuration. This structural optimization reduces free electron scattering and extends the mean free path of electrons, thereby improving the thermal conductivity of the material. It was established that the ideal fraction of Sb mass is 0.6 %, where the thermal conductivity of the Sb-altered Al-Si/AlN composite PCMs attains 49.5 W/(m·K), marking a 15.2 % enhancement over the original Al-Si/AlN composite PCMs, with a latent heat of 351.5 kJ/kg. Additionally, the creation of the Al2O3 shell led to the altered materials showing remarkable thermal stability across 200 high-temperature thermal cycles, resulting in less than a 4 % decrease in latent heat post-cycle and no leakage detected. The study offers not just an innovative approach for creating advanced Al-Si/AlN composite PCMs but also broadens their use in storing thermal energy at high temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Comprehensive VIPV energy yield and MPPT evaluation under realistic dynamic shading in urban environments Directionally structured oxalic acid dihydrate-glutaric acid/expanded graphite-graphite sheet composites with ultrahigh thermal conductivity for solar thermal storage Machine learning based prognostic analysis of a hybrid solar still coupled with evacuated tube collector and stearic acid: A comprehensive 4-E assessment Ultra-narrow strip-shaped silicon solar cells for semi-transparent PV modules: Interplay among cut edges, cell structure, strip dimensions, and partial edge passivation Corrosion behavior of laser-cladding nickel-based coating in high-temperature molten chloride salts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1