醛修饰海藻酸钠/明胶基噬菌体负载多功能水凝胶促进多重耐药细菌感染伤口愈合。

IF 8.5 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-04-03 DOI:10.1016/j.ijbiomac.2025.142778
Qingxin Yuan , Zepeng Zhao , Anbo Wei , Jiapeng Fan , Pei Wang , Shunyuan Pan , Dongyang Gao , Jun Song , Dongbo Sun
{"title":"醛修饰海藻酸钠/明胶基噬菌体负载多功能水凝胶促进多重耐药细菌感染伤口愈合。","authors":"Qingxin Yuan ,&nbsp;Zepeng Zhao ,&nbsp;Anbo Wei ,&nbsp;Jiapeng Fan ,&nbsp;Pei Wang ,&nbsp;Shunyuan Pan ,&nbsp;Dongyang Gao ,&nbsp;Jun Song ,&nbsp;Dongbo Sun","doi":"10.1016/j.ijbiomac.2025.142778","DOIUrl":null,"url":null,"abstract":"<div><div>Multidrug-resistant bacterial infections in skin injuries are hard to repair. There is an urgent need to develop new antibacterials, antibiofilm formation, and immunomodulatory wound dressing. In this study, we produced a bacteriophage-loaded multifunctional hydrogel consisting of aldehyde-modified sodium alginate (ADA), gelatin (GEL), and carboxymethyl chitosan (CMCS) through a Schiff base reaction and borax complexation. These post-reactive ADA/GEL/CMCS/Phage (AGCP) hydrogels, particularly the AGCP3 hydrogel, boast a porous structure, high swelling rate, effective hemostasis, controlled degradation, good rheological properties, and strong antibacterial activity. Furthermore, the hydrogel developed in this study can sustainably release various bacteriophages targeting the bacteria responsible for major skin infections, thereby enhancing antibacterial activity and preventing bacterial biofilm formation. Besides, cytotoxicity and cell proliferation demonstrated that the hydrogel, comprising three polysaccharides, ADA, GEL, and CMCS, facilitates skin tissue regeneration by enhancing cellular proliferation and migration. The AGCP hydrogel enhanced healing and controlled inflammation in bacterial-infected wounds, as evidenced by wound closure, collagen deposition, and quantitative reverse transcription polymerase chain reaction results. In conclusion, the AGCP3 hydrogel exhibits strong antibacterial properties, excellent expands, biocompatibility, hemostatic properties, and a controlled release of bacteriophages, making it ideal for universal bacteriophage delivery systems and wound dressings for skin wounds infected with multidrug-resistant bacteria.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"309 ","pages":"Article 142778"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aldehyde-modified sodium alginate/gelatin-based bacteriophage-loaded multifunctional hydrogel for promoting the healing of multidrug-resistant bacterial-infected wounds\",\"authors\":\"Qingxin Yuan ,&nbsp;Zepeng Zhao ,&nbsp;Anbo Wei ,&nbsp;Jiapeng Fan ,&nbsp;Pei Wang ,&nbsp;Shunyuan Pan ,&nbsp;Dongyang Gao ,&nbsp;Jun Song ,&nbsp;Dongbo Sun\",\"doi\":\"10.1016/j.ijbiomac.2025.142778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multidrug-resistant bacterial infections in skin injuries are hard to repair. There is an urgent need to develop new antibacterials, antibiofilm formation, and immunomodulatory wound dressing. In this study, we produced a bacteriophage-loaded multifunctional hydrogel consisting of aldehyde-modified sodium alginate (ADA), gelatin (GEL), and carboxymethyl chitosan (CMCS) through a Schiff base reaction and borax complexation. These post-reactive ADA/GEL/CMCS/Phage (AGCP) hydrogels, particularly the AGCP3 hydrogel, boast a porous structure, high swelling rate, effective hemostasis, controlled degradation, good rheological properties, and strong antibacterial activity. Furthermore, the hydrogel developed in this study can sustainably release various bacteriophages targeting the bacteria responsible for major skin infections, thereby enhancing antibacterial activity and preventing bacterial biofilm formation. Besides, cytotoxicity and cell proliferation demonstrated that the hydrogel, comprising three polysaccharides, ADA, GEL, and CMCS, facilitates skin tissue regeneration by enhancing cellular proliferation and migration. The AGCP hydrogel enhanced healing and controlled inflammation in bacterial-infected wounds, as evidenced by wound closure, collagen deposition, and quantitative reverse transcription polymerase chain reaction results. In conclusion, the AGCP3 hydrogel exhibits strong antibacterial properties, excellent expands, biocompatibility, hemostatic properties, and a controlled release of bacteriophages, making it ideal for universal bacteriophage delivery systems and wound dressings for skin wounds infected with multidrug-resistant bacteria.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"309 \",\"pages\":\"Article 142778\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813025033306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025033306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤损伤中的多重耐药细菌感染很难修复。开发新的抗菌、抗生物膜形成和免疫调节伤口敷料迫在眉睫。在这项研究中,我们通过席夫碱反应和硼砂复合物制备了一种噬菌体负载多功能水凝胶,由醛改性海藻酸钠(ADA)、明胶(GEL)和羧甲基壳聚糖(CMCS)组成。这些后反应型 ADA/GEL/CMCS/Phage (AGCP)水凝胶,尤其是 AGCP3 水凝胶,具有多孔结构、高溶胀率、有效止血、可控降解、良好的流变特性和较强的抗菌活性。此外,本研究开发的水凝胶还能持续释放针对主要皮肤感染细菌的各种噬菌体,从而增强抗菌活性,防止细菌生物膜的形成。此外,细胞毒性和细胞增殖试验表明,由 ADA、GEL 和 CMCS 三种多糖组成的水凝胶可通过增强细胞增殖和迁移促进皮肤组织再生。从伤口闭合、胶原蛋白沉积和定量反转录聚合酶链反应结果来看,AGCP 水凝胶促进了细菌感染伤口的愈合并控制了炎症。总之,AGCP3 水凝胶具有很强的抗菌性能、出色的扩展性、生物相容性、止血性能和噬菌体的可控释放性能,是通用噬菌体递送系统和感染多重耐药菌皮肤伤口敷料的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aldehyde-modified sodium alginate/gelatin-based bacteriophage-loaded multifunctional hydrogel for promoting the healing of multidrug-resistant bacterial-infected wounds
Multidrug-resistant bacterial infections in skin injuries are hard to repair. There is an urgent need to develop new antibacterials, antibiofilm formation, and immunomodulatory wound dressing. In this study, we produced a bacteriophage-loaded multifunctional hydrogel consisting of aldehyde-modified sodium alginate (ADA), gelatin (GEL), and carboxymethyl chitosan (CMCS) through a Schiff base reaction and borax complexation. These post-reactive ADA/GEL/CMCS/Phage (AGCP) hydrogels, particularly the AGCP3 hydrogel, boast a porous structure, high swelling rate, effective hemostasis, controlled degradation, good rheological properties, and strong antibacterial activity. Furthermore, the hydrogel developed in this study can sustainably release various bacteriophages targeting the bacteria responsible for major skin infections, thereby enhancing antibacterial activity and preventing bacterial biofilm formation. Besides, cytotoxicity and cell proliferation demonstrated that the hydrogel, comprising three polysaccharides, ADA, GEL, and CMCS, facilitates skin tissue regeneration by enhancing cellular proliferation and migration. The AGCP hydrogel enhanced healing and controlled inflammation in bacterial-infected wounds, as evidenced by wound closure, collagen deposition, and quantitative reverse transcription polymerase chain reaction results. In conclusion, the AGCP3 hydrogel exhibits strong antibacterial properties, excellent expands, biocompatibility, hemostatic properties, and a controlled release of bacteriophages, making it ideal for universal bacteriophage delivery systems and wound dressings for skin wounds infected with multidrug-resistant bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Exploring molecular interactions of drugs in different biologically active solvents: A comprehensive review for safe and efficient drug delivery systems. Genetic and metabolic regulation of eggshell quality in aging hens: Integrated multi-omics insights into CYP7A1, CALM1, and cholic/stearic acid metabolism. Corrigendum to "Phase separation in innate immunity: Teleost IL6Ra's evolutionary leap against viruses" [Int. J. Biol. Macromol. Volume 327, Part 2, October 2025, 147307]. Corrigendum to "Biochemical characterization and functional insights into DNA substrate-specific activities of a unique radiation-inducible DR1143 protein from Deinococcus radiodurans" [Int. J. Biol. Macromol. 310 (2025) 143214]. Zinc-α₂-glycoprotein overexpression attenuates gasdermin D-mediated pyroptosis in dopaminergic neurons by suppressing reactive oxygen species/mitogen-activated protein kinase signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1