图案化基底上各向异性固态脱湿的相场模拟

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-04-08 DOI:10.1016/j.actamat.2025.120992
Emma Radice , Marco Salvalaglio , Roberto Bergamaschini
{"title":"图案化基底上各向异性固态脱湿的相场模拟","authors":"Emma Radice ,&nbsp;Marco Salvalaglio ,&nbsp;Roberto Bergamaschini","doi":"10.1016/j.actamat.2025.120992","DOIUrl":null,"url":null,"abstract":"<div><div>We present a phase-field model for simulating the solid-state dewetting of anisotropic crystalline films on non-planar substrates. This model exploits two order parameters to trace implicitly the crystal free surface and the substrate profile in both two and three dimensions. First, we validate the model by comparing numerical simulation results for planar substrates with those obtained by a conventional phase-field approach and by assessing the convergence toward the equilibrium shape predicted by the Winterbottom construction. We then explore non-planar geometries, examining the combined effects of surface-energy anisotropies and parameters controlling the contact angle. Our findings reveal that crystalline particles on curved supports lose self-similarity and exhibit a volume-dependent apparent contact angle, with opposite trends for convex versus concave profiles. Additionally, we investigate the migration of faceted particles on substrates with variable curvature. Applying this model to experimentally relevant cases like spheroidal and pit-patterned substrates demonstrates various behaviours that could be leveraged to direct self-assembly of nanostructures, from ordered nanoparticles to interconnected networks with complex topology.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"292 ","pages":"Article 120992"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-field modelling of anisotropic solid-state dewetting on patterned substrates\",\"authors\":\"Emma Radice ,&nbsp;Marco Salvalaglio ,&nbsp;Roberto Bergamaschini\",\"doi\":\"10.1016/j.actamat.2025.120992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a phase-field model for simulating the solid-state dewetting of anisotropic crystalline films on non-planar substrates. This model exploits two order parameters to trace implicitly the crystal free surface and the substrate profile in both two and three dimensions. First, we validate the model by comparing numerical simulation results for planar substrates with those obtained by a conventional phase-field approach and by assessing the convergence toward the equilibrium shape predicted by the Winterbottom construction. We then explore non-planar geometries, examining the combined effects of surface-energy anisotropies and parameters controlling the contact angle. Our findings reveal that crystalline particles on curved supports lose self-similarity and exhibit a volume-dependent apparent contact angle, with opposite trends for convex versus concave profiles. Additionally, we investigate the migration of faceted particles on substrates with variable curvature. Applying this model to experimentally relevant cases like spheroidal and pit-patterned substrates demonstrates various behaviours that could be leveraged to direct self-assembly of nanostructures, from ordered nanoparticles to interconnected networks with complex topology.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"292 \",\"pages\":\"Article 120992\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425002836\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002836","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种相场模型,用于模拟非平面基底上各向异性晶体薄膜的固态露化。该模型利用两个阶次参数在二维和三维空间隐式追踪晶体自由表面和基底轮廓。首先,我们将平面基底的数值模拟结果与传统相场方法获得的结果进行比较,并评估向温特伯顿结构预测的平衡形状收敛的情况,从而验证该模型。然后,我们探讨了非平面几何形状,研究了表面能量各向异性和控制接触角参数的综合影响。我们的研究结果表明,弯曲支撑物上的晶体颗粒失去了自相似性,表现出与体积相关的表观接触角,凸面与凹面的趋势相反。此外,我们还研究了刻面颗粒在曲率可变基底上的迁移。将这一模型应用于实验相关的情况,如球形和凹坑图案基底,展示了可用于指导纳米结构自组装的各种行为,包括从有序纳米颗粒到具有复杂拓扑结构的互连网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase-field modelling of anisotropic solid-state dewetting on patterned substrates
We present a phase-field model for simulating the solid-state dewetting of anisotropic crystalline films on non-planar substrates. This model exploits two order parameters to trace implicitly the crystal free surface and the substrate profile in both two and three dimensions. First, we validate the model by comparing numerical simulation results for planar substrates with those obtained by a conventional phase-field approach and by assessing the convergence toward the equilibrium shape predicted by the Winterbottom construction. We then explore non-planar geometries, examining the combined effects of surface-energy anisotropies and parameters controlling the contact angle. Our findings reveal that crystalline particles on curved supports lose self-similarity and exhibit a volume-dependent apparent contact angle, with opposite trends for convex versus concave profiles. Additionally, we investigate the migration of faceted particles on substrates with variable curvature. Applying this model to experimentally relevant cases like spheroidal and pit-patterned substrates demonstrates various behaviours that could be leveraged to direct self-assembly of nanostructures, from ordered nanoparticles to interconnected networks with complex topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Micropores governed high-temperature oxidation behavior of Cr coatings: kinetics analysis and phase-field modeling General linear correction method for DFT+X energy: application to U-M (M=Al, Ga, In) alloys under high pressure Corrigendum to “Nested crystal graph neural networks for modeling chemically complex materials” [Acta Materialia 303 (2026) 121725] Double-tough and ultra-strong ceramics: Leveraging multiscale toughening mechanisms through bayesian optimization Atomistic insights into structural ordering effects on martensitic transformations in Mg–Sc shape memory alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1