层次化HZSM-5中协同Ni-Ce双位点:突破富二氧化碳胺再生的能效瓶颈

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-04-09 DOI:10.1016/j.seppur.2025.132962
Qiang Sun , Hongxia Gao , Lianbo Liu , Niu Liu , Min Xiao , Teerawat Sema , Shaofei Wang , Zhiwu Liang
{"title":"层次化HZSM-5中协同Ni-Ce双位点:突破富二氧化碳胺再生的能效瓶颈","authors":"Qiang Sun ,&nbsp;Hongxia Gao ,&nbsp;Lianbo Liu ,&nbsp;Niu Liu ,&nbsp;Min Xiao ,&nbsp;Teerawat Sema ,&nbsp;Shaofei Wang ,&nbsp;Zhiwu Liang","doi":"10.1016/j.seppur.2025.132962","DOIUrl":null,"url":null,"abstract":"<div><div>In the CO<sub>2</sub> desorption process, solid acid catalysts with high surface area and abundant acid sites have emerged as promising candidates for enhancing CO<sub>2</sub>-rich amine regeneration efficiency. Herein, we designed a hierarchical HZSM-5 catalyst modified with a bimetallic combination of Ni and Ce using a one-step synthesis method to accelerate CO<sub>2</sub> desorption rate. The optimized catalyst exhibited a high mesoporous specific surface, abundant acid sites, and excellent stability, leading to a remarkable 55.8% increase in the CO<sub>2</sub> desorbed amount. Cyclic tests demonstrated sustained catalytic performance, with no significant decline in CO<sub>2</sub> desorption performance over multiple cycles. Furthermore, the HZ-NiCe (3:2) catalyst exhibited broad applicability across various typical blended amine systems. This work provides a novel synthesis strategy for promoting the catalytic efficiency for economical CO<sub>2</sub> desorption and further decreasing the cost of CO<sub>2</sub> capture.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"368 ","pages":"Article 132962"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Ni-Ce Dual sites in hierarchical HZSM-5: Breaking the energy-efficiency bottleneck in CO2-rich amine regeneration\",\"authors\":\"Qiang Sun ,&nbsp;Hongxia Gao ,&nbsp;Lianbo Liu ,&nbsp;Niu Liu ,&nbsp;Min Xiao ,&nbsp;Teerawat Sema ,&nbsp;Shaofei Wang ,&nbsp;Zhiwu Liang\",\"doi\":\"10.1016/j.seppur.2025.132962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the CO<sub>2</sub> desorption process, solid acid catalysts with high surface area and abundant acid sites have emerged as promising candidates for enhancing CO<sub>2</sub>-rich amine regeneration efficiency. Herein, we designed a hierarchical HZSM-5 catalyst modified with a bimetallic combination of Ni and Ce using a one-step synthesis method to accelerate CO<sub>2</sub> desorption rate. The optimized catalyst exhibited a high mesoporous specific surface, abundant acid sites, and excellent stability, leading to a remarkable 55.8% increase in the CO<sub>2</sub> desorbed amount. Cyclic tests demonstrated sustained catalytic performance, with no significant decline in CO<sub>2</sub> desorption performance over multiple cycles. Furthermore, the HZ-NiCe (3:2) catalyst exhibited broad applicability across various typical blended amine systems. This work provides a novel synthesis strategy for promoting the catalytic efficiency for economical CO<sub>2</sub> desorption and further decreasing the cost of CO<sub>2</sub> capture.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"368 \",\"pages\":\"Article 132962\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138358662501559X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138358662501559X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在CO2脱附过程中,具有高表面积和丰富酸位的固体酸催化剂是提高富CO2胺再生效率的有希望的候选人。本文设计了一种以Ni和Ce双金属组合改性的HZSM-5催化剂,采用一步法合成,以加速CO2的脱附速率。优化后的催化剂具有较高的介孔比表面积、丰富的酸位和良好的稳定性,使CO2解吸量提高了55.8%。循环试验证明了持续的催化性能,在多个循环中CO2解吸性能没有显著下降。此外,HZ-NiCe(3:2)催化剂在各种典型的混合胺体系中表现出广泛的适用性。本研究为提高CO2经济解吸的催化效率和进一步降低CO2捕集成本提供了一种新的合成策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic Ni-Ce Dual sites in hierarchical HZSM-5: Breaking the energy-efficiency bottleneck in CO2-rich amine regeneration
In the CO2 desorption process, solid acid catalysts with high surface area and abundant acid sites have emerged as promising candidates for enhancing CO2-rich amine regeneration efficiency. Herein, we designed a hierarchical HZSM-5 catalyst modified with a bimetallic combination of Ni and Ce using a one-step synthesis method to accelerate CO2 desorption rate. The optimized catalyst exhibited a high mesoporous specific surface, abundant acid sites, and excellent stability, leading to a remarkable 55.8% increase in the CO2 desorbed amount. Cyclic tests demonstrated sustained catalytic performance, with no significant decline in CO2 desorption performance over multiple cycles. Furthermore, the HZ-NiCe (3:2) catalyst exhibited broad applicability across various typical blended amine systems. This work provides a novel synthesis strategy for promoting the catalytic efficiency for economical CO2 desorption and further decreasing the cost of CO2 capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Bacterial cellulose/tannic acid molecularly imprinted aerogel microspheres via metal coordination and covalent sequential crosslinking for selective adsorption of Cordycepin Beyond surface coating: A bulk-modified and mechanically stable aerogel for sustainable oil/water separation Integrated adsorption and photo-Fenton catalysis for efficient water decontamination using a scalable and recyclable waste-derived MOF-cotton composite Design of Fe N co-doped porous carbon catalysts via black fungus biomass pyrolysis: Mechanism and application in tetracycline removal Engineering a robust S-scheme Ag₃PO₄/Bi₅O₇I photocatalyst: mechanistic insights into sustainable visible-light degradation of 2,4-DCP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1