一种用于细菌感染鉴定和根除的双机制发光抗生素

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-04-11 DOI:10.1126/sciadv.adp9448
Guobin Qi, Xianglong Liu, Hao Li, Yunyun Qian, Can Liu, Jiahao Zhuang, Leilei Shi, Bin Liu
{"title":"一种用于细菌感染鉴定和根除的双机制发光抗生素","authors":"Guobin Qi,&nbsp;Xianglong Liu,&nbsp;Hao Li,&nbsp;Yunyun Qian,&nbsp;Can Liu,&nbsp;Jiahao Zhuang,&nbsp;Leilei Shi,&nbsp;Bin Liu","doi":"10.1126/sciadv.adp9448","DOIUrl":null,"url":null,"abstract":"<div >Because of the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover antibacterial agents. Here, we design and synthesize a compound of TPA2PyBu that kills both Gram-negative and Gram-positive bacteria with an undetectably low drug resistance. Comprehensive analyses reveal that the antimicrobial activity of TPA2PyBu proceeds via a unique dual mechanism by damaging bacterial membrane integrity and inducing DNA aggregation. TPA2PyBu could provide imaging specificity that differentiates bacterial infection from inflammation and cancer. High in vivo treatment efficacy of TPA2PyBu was achieved in methicillin-resistant <i>Staphylococcus aureus</i> infection mouse models. This promising antimicrobial agent suggests that combining multiple mechanisms of action into a single molecule can be an effective approach to address challenging bacterial infections.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp9448","citationCount":"0","resultStr":"{\"title\":\"A dual-mechanism luminescent antibiotic for bacterial infection identification and eradication\",\"authors\":\"Guobin Qi,&nbsp;Xianglong Liu,&nbsp;Hao Li,&nbsp;Yunyun Qian,&nbsp;Can Liu,&nbsp;Jiahao Zhuang,&nbsp;Leilei Shi,&nbsp;Bin Liu\",\"doi\":\"10.1126/sciadv.adp9448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Because of the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover antibacterial agents. Here, we design and synthesize a compound of TPA2PyBu that kills both Gram-negative and Gram-positive bacteria with an undetectably low drug resistance. Comprehensive analyses reveal that the antimicrobial activity of TPA2PyBu proceeds via a unique dual mechanism by damaging bacterial membrane integrity and inducing DNA aggregation. TPA2PyBu could provide imaging specificity that differentiates bacterial infection from inflammation and cancer. High in vivo treatment efficacy of TPA2PyBu was achieved in methicillin-resistant <i>Staphylococcus aureus</i> infection mouse models. This promising antimicrobial agent suggests that combining multiple mechanisms of action into a single molecule can be an effective approach to address challenging bacterial infections.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 15\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adp9448\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adp9448\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp9448","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于抗生素耐药细菌的迅速出现,人们越来越需要发现抗菌剂。在这里,我们设计并合成了一种 TPA2PyBu 化合物,它既能杀死革兰氏阴性菌,也能杀死革兰氏阳性菌,而且耐药性极低。综合分析表明,TPA2PyBu 的抗菌活性是通过独特的双重机制进行的,即破坏细菌膜完整性和诱导 DNA 聚合。TPA2PyBu 可提供成像特异性,将细菌感染与炎症和癌症区分开来。在耐甲氧西林金黄色葡萄球菌感染小鼠模型中,TPA2PyBu 取得了很高的体内治疗效果。这种前景广阔的抗菌剂表明,将多种作用机制结合到单一分子中是解决具有挑战性的细菌感染的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dual-mechanism luminescent antibiotic for bacterial infection identification and eradication
Because of the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover antibacterial agents. Here, we design and synthesize a compound of TPA2PyBu that kills both Gram-negative and Gram-positive bacteria with an undetectably low drug resistance. Comprehensive analyses reveal that the antimicrobial activity of TPA2PyBu proceeds via a unique dual mechanism by damaging bacterial membrane integrity and inducing DNA aggregation. TPA2PyBu could provide imaging specificity that differentiates bacterial infection from inflammation and cancer. High in vivo treatment efficacy of TPA2PyBu was achieved in methicillin-resistant Staphylococcus aureus infection mouse models. This promising antimicrobial agent suggests that combining multiple mechanisms of action into a single molecule can be an effective approach to address challenging bacterial infections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Revitalizing poly(urea)s via disulfide reconfiguration Cryo-EM structure of the vaccinia virus entry fusion complex reveals a multicomponent fusion machinery Inflammation-triggered self-immolative conjugates enable oral peptide delivery by overcoming gastrointestinal barriers Productivity-driven decoupling of microbial carbon use efficiency and respiration across global soils Ancient Yellow River ancestry and divergent admixture histories in the Qiang people
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1