Jingzhi Li , Xinyu Tao , Yong Zhang , Chuan-sheng Chen , Jiaqin Liu , Hark Hoe Tan , Yucheng Wu
{"title":"具有电致变色/储能双功能的超细氧化镍纳米晶体的溶剂热合成与表征","authors":"Jingzhi Li , Xinyu Tao , Yong Zhang , Chuan-sheng Chen , Jiaqin Liu , Hark Hoe Tan , Yucheng Wu","doi":"10.1016/j.cplett.2025.142091","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafine NiO nanocrystals with an average size of approximately 3.3 nm were synthesized using a controlled solvothermal method. The spin-coated NiO films exhibited remarkable electrochromic properties, including a high contrast (79.7 % at 550 nm), excellent transmittance in the bleached state (98.7 % at 550 nm), and fast coloring (1.6 s) and bleaching (1.9 s) response time. These superior performances can be attributed to the ultrafine grain size and good dispersion of the nanocrystals. Notably, an assembled device demonstrated superior dual-functional electrochromic and energy storage properties. Furthermore, the nanocrystals showed promising potential for microelectronic printing, highlighting their applicability in smart display technology.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"870 ","pages":"Article 142091"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvothermal synthesis and characterization of ultrafine nickel oxide nanocrystals with dual-functional electrochromic/energy storage performance\",\"authors\":\"Jingzhi Li , Xinyu Tao , Yong Zhang , Chuan-sheng Chen , Jiaqin Liu , Hark Hoe Tan , Yucheng Wu\",\"doi\":\"10.1016/j.cplett.2025.142091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrafine NiO nanocrystals with an average size of approximately 3.3 nm were synthesized using a controlled solvothermal method. The spin-coated NiO films exhibited remarkable electrochromic properties, including a high contrast (79.7 % at 550 nm), excellent transmittance in the bleached state (98.7 % at 550 nm), and fast coloring (1.6 s) and bleaching (1.9 s) response time. These superior performances can be attributed to the ultrafine grain size and good dispersion of the nanocrystals. Notably, an assembled device demonstrated superior dual-functional electrochromic and energy storage properties. Furthermore, the nanocrystals showed promising potential for microelectronic printing, highlighting their applicability in smart display technology.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"870 \",\"pages\":\"Article 142091\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261425002313\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425002313","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solvothermal synthesis and characterization of ultrafine nickel oxide nanocrystals with dual-functional electrochromic/energy storage performance
Ultrafine NiO nanocrystals with an average size of approximately 3.3 nm were synthesized using a controlled solvothermal method. The spin-coated NiO films exhibited remarkable electrochromic properties, including a high contrast (79.7 % at 550 nm), excellent transmittance in the bleached state (98.7 % at 550 nm), and fast coloring (1.6 s) and bleaching (1.9 s) response time. These superior performances can be attributed to the ultrafine grain size and good dispersion of the nanocrystals. Notably, an assembled device demonstrated superior dual-functional electrochromic and energy storage properties. Furthermore, the nanocrystals showed promising potential for microelectronic printing, highlighting their applicability in smart display technology.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.