氮掺杂碳包覆多孔TiO2微球作为锂离子电池负极材料的电化学性能研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-04-17 DOI:10.1039/D5RA01379H
Shimei Guo, Yue Wang, Shubiao Xia, Hanwei Li, Siyuan Zuo and Wangqiong Xu
{"title":"氮掺杂碳包覆多孔TiO2微球作为锂离子电池负极材料的电化学性能研究","authors":"Shimei Guo, Yue Wang, Shubiao Xia, Hanwei Li, Siyuan Zuo and Wangqiong Xu","doi":"10.1039/D5RA01379H","DOIUrl":null,"url":null,"abstract":"<p >TiO<small><sub>2</sub></small> has a robust structure and low cost and is non-toxic. However, its low electronic conductivity and lithium-ion diffusivity impede its practical application in LIBs. To improve the conductivity and lithium-ion dynamics of titanium dioxide (TiO<small><sub>2</sub></small>), we synthesized porous TiO<small><sub>2</sub></small> microspheres coated with nitrogen-doped carbon (TiO<small><sub>2</sub></small>@C–N) through a solvothermal method combined with pyrolysis and carbonization technology. The nitrogen-doped carbon coating was prepared using a one-pot sealed carbonization method with pyrrole as the source of carbon and nitrogen. The porous TiO<small><sub>2</sub></small> matrix in the TiO<small><sub>2</sub></small>@C–N composites provided numerous open transport pathways and storage sites for Li ions, while the nitrogen-doped carbon coating promoted the movement of electrons, leading to enhanced electrical conductivity. Undergoing 5000 cycles at 2 A g<small><sup>−1</sup></small>, the TiO<small><sub>2</sub></small>@C–N electrode delivered a cycling capacity of 71.8 mA h g<small><sup>−1</sup></small>, while the capacity of commercial graphite decayed rapidly after 3300 cycles. Rate tests of both samples under the same conditions demonstrated that the TiO<small><sub>2</sub></small>@C–N electrode was more suitable for fast charging/discharging than the graphite anode. Therefore, the TiO<small><sub>2</sub></small>@C–N composites are expected to be an alternative to commercial graphite anodes based on their electrochemical performance.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 15","pages":" 11790-11798"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01379h?page=search","citationCount":"0","resultStr":"{\"title\":\"Electrochemical performance of porous TiO2 microspheres coated with nitrogen-doped carbon as an anode material for lithium-ion batteries†\",\"authors\":\"Shimei Guo, Yue Wang, Shubiao Xia, Hanwei Li, Siyuan Zuo and Wangqiong Xu\",\"doi\":\"10.1039/D5RA01379H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >TiO<small><sub>2</sub></small> has a robust structure and low cost and is non-toxic. However, its low electronic conductivity and lithium-ion diffusivity impede its practical application in LIBs. To improve the conductivity and lithium-ion dynamics of titanium dioxide (TiO<small><sub>2</sub></small>), we synthesized porous TiO<small><sub>2</sub></small> microspheres coated with nitrogen-doped carbon (TiO<small><sub>2</sub></small>@C–N) through a solvothermal method combined with pyrolysis and carbonization technology. The nitrogen-doped carbon coating was prepared using a one-pot sealed carbonization method with pyrrole as the source of carbon and nitrogen. The porous TiO<small><sub>2</sub></small> matrix in the TiO<small><sub>2</sub></small>@C–N composites provided numerous open transport pathways and storage sites for Li ions, while the nitrogen-doped carbon coating promoted the movement of electrons, leading to enhanced electrical conductivity. Undergoing 5000 cycles at 2 A g<small><sup>−1</sup></small>, the TiO<small><sub>2</sub></small>@C–N electrode delivered a cycling capacity of 71.8 mA h g<small><sup>−1</sup></small>, while the capacity of commercial graphite decayed rapidly after 3300 cycles. Rate tests of both samples under the same conditions demonstrated that the TiO<small><sub>2</sub></small>@C–N electrode was more suitable for fast charging/discharging than the graphite anode. Therefore, the TiO<small><sub>2</sub></small>@C–N composites are expected to be an alternative to commercial graphite anodes based on their electrochemical performance.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 15\",\"pages\":\" 11790-11798\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01379h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01379h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01379h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TiO2结构坚固,成本低,无毒。然而,它的低电子导电性和锂离子扩散率阻碍了它在锂离子电池中的实际应用。为了提高二氧化钛(TiO2)的电导率和锂离子动力学性能,我们采用溶剂热法结合热解和碳化技术合成了掺杂氮碳(TiO2@C -N)包覆的多孔TiO2微球。以吡咯为碳源和氮源,采用一锅密封炭化法制备了氮掺杂碳涂层。TiO2@C -N复合材料中的多孔TiO2基质为Li离子提供了许多开放的传输途径和存储位点,而氮掺杂碳涂层促进了电子的运动,从而提高了导电性。在2 A g−1下循环5000次,TiO2@C -N电极的循环容量为71.8 mA h g−1,而商用石墨在3300次循环后容量迅速衰减。两种样品在相同条件下的速率测试表明,TiO2@C -N电极比石墨阳极更适合快速充放电。因此,TiO2@C -N复合材料有望成为基于其电化学性能的商用石墨阳极的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical performance of porous TiO2 microspheres coated with nitrogen-doped carbon as an anode material for lithium-ion batteries†

TiO2 has a robust structure and low cost and is non-toxic. However, its low electronic conductivity and lithium-ion diffusivity impede its practical application in LIBs. To improve the conductivity and lithium-ion dynamics of titanium dioxide (TiO2), we synthesized porous TiO2 microspheres coated with nitrogen-doped carbon (TiO2@C–N) through a solvothermal method combined with pyrolysis and carbonization technology. The nitrogen-doped carbon coating was prepared using a one-pot sealed carbonization method with pyrrole as the source of carbon and nitrogen. The porous TiO2 matrix in the TiO2@C–N composites provided numerous open transport pathways and storage sites for Li ions, while the nitrogen-doped carbon coating promoted the movement of electrons, leading to enhanced electrical conductivity. Undergoing 5000 cycles at 2 A g−1, the TiO2@C–N electrode delivered a cycling capacity of 71.8 mA h g−1, while the capacity of commercial graphite decayed rapidly after 3300 cycles. Rate tests of both samples under the same conditions demonstrated that the TiO2@C–N electrode was more suitable for fast charging/discharging than the graphite anode. Therefore, the TiO2@C–N composites are expected to be an alternative to commercial graphite anodes based on their electrochemical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
PLGA nanoparticles in otoprotection and inner ear regeneration: a new frontier in nanomedicine for hearing disorders Advancements in functional smart and wearable textiles for sportswear applications First-principles study of vanadium-based Half-Heusler compounds: structural, electronic, optical, and thermomechanical properties for optoelectronics Optimization of compression ratio in LHR engine fueled with nano Al2O3-emulsified biodiesel using RSM and machine learning Influence of gas molecule adsorption on the mechanical properties of the graphene/aluminum interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1