在难熔高熵合金中实现优异的强度-延性协同

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-04-22 DOI:10.1016/j.intermet.2025.108794
Mingjun Qiu , Ping Huang , Chao Gu , Fei Wang
{"title":"在难熔高熵合金中实现优异的强度-延性协同","authors":"Mingjun Qiu ,&nbsp;Ping Huang ,&nbsp;Chao Gu ,&nbsp;Fei Wang","doi":"10.1016/j.intermet.2025.108794","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast to the successful realization of strength-ductility synergy through local chemical ordering (LCO) in FCC systems, achieving similar effects in BCC structures remains challenging. The complex core structure of BCC dislocations leads to an opposite hindrance effect of LCO on screw dislocations compared to FCC systems, necessitating compositional design to optimize LCO distribution and morphology. Guided by the negative enthalpy alloy design philosophy, this study introduces high-density LCO in the V950 alloy. By modulating the synergistic interaction between LCO and texture, the alloy achieves exceptional mechanical properties, including ultrahigh yield strength (∼960 MPa), ultimate tensile strength (1159 MPa), and fracture elongation (∼27.5 %), surpassing most reported refractory high-entropy alloys (RHEAs). Furthermore, this work elucidates novel mechanisms of work hardening behavior in BCC-structured alloys, advancing fundamental understanding and design strategies for high-performance BCC systems.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"183 ","pages":"Article 108794"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving superior strength–ductility synergy in refractory high entropy alloy\",\"authors\":\"Mingjun Qiu ,&nbsp;Ping Huang ,&nbsp;Chao Gu ,&nbsp;Fei Wang\",\"doi\":\"10.1016/j.intermet.2025.108794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contrast to the successful realization of strength-ductility synergy through local chemical ordering (LCO) in FCC systems, achieving similar effects in BCC structures remains challenging. The complex core structure of BCC dislocations leads to an opposite hindrance effect of LCO on screw dislocations compared to FCC systems, necessitating compositional design to optimize LCO distribution and morphology. Guided by the negative enthalpy alloy design philosophy, this study introduces high-density LCO in the V950 alloy. By modulating the synergistic interaction between LCO and texture, the alloy achieves exceptional mechanical properties, including ultrahigh yield strength (∼960 MPa), ultimate tensile strength (1159 MPa), and fracture elongation (∼27.5 %), surpassing most reported refractory high-entropy alloys (RHEAs). Furthermore, this work elucidates novel mechanisms of work hardening behavior in BCC-structured alloys, advancing fundamental understanding and design strategies for high-performance BCC systems.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"183 \",\"pages\":\"Article 108794\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525001591\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525001591","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与FCC系统中通过局部化学有序(LCO)成功实现强度-延性协同相比,在BCC结构中实现类似的效果仍然具有挑战性。BCC位错复杂的核心结构导致LCO对螺杆位错的阻碍作用与FCC体系相反,因此需要通过成分设计来优化LCO的分布和形态。本研究以负焓合金设计理念为指导,在V950合金中引入高密度LCO。通过调节LCO和织构之间的协同作用,该合金获得了卓越的机械性能,包括超高屈服强度(~ 960 MPa)、极限抗拉强度(1159 MPa)和断裂伸长率(~ 27.5%),超过了大多数报道的耐火高熵合金(RHEAs)。此外,这项工作阐明了BCC结构合金加工硬化行为的新机制,促进了对高性能BCC系统的基本理解和设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving superior strength–ductility synergy in refractory high entropy alloy
In contrast to the successful realization of strength-ductility synergy through local chemical ordering (LCO) in FCC systems, achieving similar effects in BCC structures remains challenging. The complex core structure of BCC dislocations leads to an opposite hindrance effect of LCO on screw dislocations compared to FCC systems, necessitating compositional design to optimize LCO distribution and morphology. Guided by the negative enthalpy alloy design philosophy, this study introduces high-density LCO in the V950 alloy. By modulating the synergistic interaction between LCO and texture, the alloy achieves exceptional mechanical properties, including ultrahigh yield strength (∼960 MPa), ultimate tensile strength (1159 MPa), and fracture elongation (∼27.5 %), surpassing most reported refractory high-entropy alloys (RHEAs). Furthermore, this work elucidates novel mechanisms of work hardening behavior in BCC-structured alloys, advancing fundamental understanding and design strategies for high-performance BCC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Microstructural and tribological characteristics of boroaluminized Monel K-500 superalloy Evolution of oriented lamellar microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy fabricated by vacuum twin-roll strip casting Effect of Co on microstructure and properties of iron-rich AlCoxCrFe2.5Ni (x = 0, 0.2, 0.5, 1.0) high entropy alloys Microstructure and properties of NiTi/NiTiNb ultrafine eutectic composite welded joints with superelasticity Age-hardening treatment induced multiscale precipitation for enhanced wear resistance in laser-cladded high-entropy alloy coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1