磁场增强晶体-非晶混合镍钴氢氧化物纳米管用于超级电容器的高能和20,000循环稳定性:机理见解和性能增强

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-04-23 DOI:10.1016/j.electacta.2025.146287
Zixuan Zhang , Chang Li , Pengbo Ding , Lixiu Guan , Zhuoao Li , Shuo Zhang , Dan Xing , Junguang Tao
{"title":"磁场增强晶体-非晶混合镍钴氢氧化物纳米管用于超级电容器的高能和20,000循环稳定性:机理见解和性能增强","authors":"Zixuan Zhang ,&nbsp;Chang Li ,&nbsp;Pengbo Ding ,&nbsp;Lixiu Guan ,&nbsp;Zhuoao Li ,&nbsp;Shuo Zhang ,&nbsp;Dan Xing ,&nbsp;Junguang Tao","doi":"10.1016/j.electacta.2025.146287","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for high-performance supercapacitors with enhanced energy density and cycling stability poses a significant challenge in sustainable energy storage. In this study, we engineered a hybrid material combining amorphous domains to facilitate rapid ion diffusion with crystalline phases of CoNiO<sub>2</sub> and Ni(OH)<sub>2</sub> to enhance electronic conductivity. Remarkably, when exposed to magnetic fields, it demonstrated a 23.9 % capacity increase (from 709.3 to 879.1 C g<sup>-1</sup>), attributed to magnetohydrodynamic effects that enhance OH<sup>-</sup> ion transport and reduce charge recombination. At 15 A g<sup>-1</sup>, the device retained 81.9 % of its capacity at 1 A g<sup>-1</sup>. Magnetic fields were found to lower charge-transfer resistance (from 0.743 to 0.481 Ω at 100 mT) and promote diffusion-controlled contributions via Lorentz force-driven ion convection. In asymmetric supercapacitor configurations, the device achieved 41.00 Wh kg<sup>-1</sup> at 937.4 W kg<sup>-1</sup> without a magnetic field. At 200 mT, it delivered 44.38 Wh kg<sup>-1</sup> at 926.7 W kg<sup>-1</sup>, with 96.2 % capacity retention after 20,000 cycles, demonstrating an enhanced energy storage performance. This work demonstrates a novel strategy for leveraging magnetic fields to address the conductivity-diffusivity trade-off in transition metal hydroxides, providing a universal strategy for developing high-energy storage systems in electromagnetically active environments.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"528 ","pages":"Article 146287"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field-enhanced crystalline-amorphous hybrid nickel-cobalt hydroxide nanotubes for high-energy and 20,000-cycle stability in supercapacitors: mechanistic insights and performance enhancement\",\"authors\":\"Zixuan Zhang ,&nbsp;Chang Li ,&nbsp;Pengbo Ding ,&nbsp;Lixiu Guan ,&nbsp;Zhuoao Li ,&nbsp;Shuo Zhang ,&nbsp;Dan Xing ,&nbsp;Junguang Tao\",\"doi\":\"10.1016/j.electacta.2025.146287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quest for high-performance supercapacitors with enhanced energy density and cycling stability poses a significant challenge in sustainable energy storage. In this study, we engineered a hybrid material combining amorphous domains to facilitate rapid ion diffusion with crystalline phases of CoNiO<sub>2</sub> and Ni(OH)<sub>2</sub> to enhance electronic conductivity. Remarkably, when exposed to magnetic fields, it demonstrated a 23.9 % capacity increase (from 709.3 to 879.1 C g<sup>-1</sup>), attributed to magnetohydrodynamic effects that enhance OH<sup>-</sup> ion transport and reduce charge recombination. At 15 A g<sup>-1</sup>, the device retained 81.9 % of its capacity at 1 A g<sup>-1</sup>. Magnetic fields were found to lower charge-transfer resistance (from 0.743 to 0.481 Ω at 100 mT) and promote diffusion-controlled contributions via Lorentz force-driven ion convection. In asymmetric supercapacitor configurations, the device achieved 41.00 Wh kg<sup>-1</sup> at 937.4 W kg<sup>-1</sup> without a magnetic field. At 200 mT, it delivered 44.38 Wh kg<sup>-1</sup> at 926.7 W kg<sup>-1</sup>, with 96.2 % capacity retention after 20,000 cycles, demonstrating an enhanced energy storage performance. This work demonstrates a novel strategy for leveraging magnetic fields to address the conductivity-diffusivity trade-off in transition metal hydroxides, providing a universal strategy for developing high-energy storage systems in electromagnetically active environments.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"528 \",\"pages\":\"Article 146287\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625006486\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625006486","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

寻求具有更高能量密度和循环稳定性的高性能超级电容器是可持续储能领域的一项重大挑战。在这项研究中,我们设计了一种混合材料,它将非晶态畴与 CoNiO2 和 Ni(OH)2 晶态相结合,前者可促进离子的快速扩散,后者可增强电子传导性。值得注意的是,当暴露在磁场中时,它的容量增加了 23.9%(从 709.3 C g-1 增加到 879.1 C g-1),这归功于磁流体动力学效应,它增强了 OH 离子传输并减少了电荷重组。在 15 A g-1 的条件下,该装置的容量保持了 1 A g-1 时的 81.9%。研究发现,磁场可降低电荷传输电阻(100 mT 时从 0.743 Ω 降至 0.481 Ω),并通过洛伦兹力驱动的离子对流促进扩散控制贡献。在非对称超级电容器配置中,该装置在没有磁场的情况下以 937.4 W kg-1 的功率实现了 41.00 Wh kg-1。在 200 mT 下,该装置能以 926.7 W kg-1 的功率输出 44.38 Wh kg-1,在 20,000 次循环后容量保持率为 96.2%,显示出更强的储能性能。这项工作展示了一种利用磁场解决过渡金属氢氧化物中电导率-扩散率权衡问题的新策略,为在电磁活跃环境中开发高能量存储系统提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic field-enhanced crystalline-amorphous hybrid nickel-cobalt hydroxide nanotubes for high-energy and 20,000-cycle stability in supercapacitors: mechanistic insights and performance enhancement
The quest for high-performance supercapacitors with enhanced energy density and cycling stability poses a significant challenge in sustainable energy storage. In this study, we engineered a hybrid material combining amorphous domains to facilitate rapid ion diffusion with crystalline phases of CoNiO2 and Ni(OH)2 to enhance electronic conductivity. Remarkably, when exposed to magnetic fields, it demonstrated a 23.9 % capacity increase (from 709.3 to 879.1 C g-1), attributed to magnetohydrodynamic effects that enhance OH- ion transport and reduce charge recombination. At 15 A g-1, the device retained 81.9 % of its capacity at 1 A g-1. Magnetic fields were found to lower charge-transfer resistance (from 0.743 to 0.481 Ω at 100 mT) and promote diffusion-controlled contributions via Lorentz force-driven ion convection. In asymmetric supercapacitor configurations, the device achieved 41.00 Wh kg-1 at 937.4 W kg-1 without a magnetic field. At 200 mT, it delivered 44.38 Wh kg-1 at 926.7 W kg-1, with 96.2 % capacity retention after 20,000 cycles, demonstrating an enhanced energy storage performance. This work demonstrates a novel strategy for leveraging magnetic fields to address the conductivity-diffusivity trade-off in transition metal hydroxides, providing a universal strategy for developing high-energy storage systems in electromagnetically active environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
The CuCo₂S₄ Oxidation–pH Relationship: An Integrated Electrochemical and Atomic-Scale Investigation Single electron transfer activation of PMS based on Fe2+/Fe3+ internal cycling in Fe3O4 for ofloxacin degradation Dispersible Multidentate Gallic Acid Chelators for Sustainable Perovskite Solar Cells Novel design and fabrication of Bi2S3@NC nanofibers as promising anodes for advanced potassium energy storage A high-precision battery model based on improved micro-current and step excitation parameter identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1