R A Steeves, H I Robins, K Miller, P Martin, L Shecterle, W Dennis
{"title":"全身热疗与照射治疗小鼠AKR白血病的相互作用。","authors":"R A Steeves, H I Robins, K Miller, P Martin, L Shecterle, W Dennis","doi":"10.1080/09553008714552511","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-body hyperthermia (WBH) to 41-42 degrees C combined with fractionated total-body irradiation (TBI) was studied in mice with transplanted AKR leukemia. Mice treated with both TBI and WBH survived longer than mice treated with either modality alone. From other groups of similarly treated mice the spleens were removed, weighed, and assayed for their content of leukemic colony-forming units (CFU) by injecting single-cell suspensions into normal syngeneic recipients. Using this methodology it was determined that the thermal enhancement ratio for WBH combined with TBI was 1.6, and that enhanced killing of leukemia cells occurred irrespective of the sequence of WBH and TBI. Data are presented which relate variables, such as duration of WBH or heating time to target temperature, to the response of neoplastic disease. The implications of these preclinical findings to clinical trials are discussed.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"52 6","pages":"935-47"},"PeriodicalIF":0.0000,"publicationDate":"1987-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008714552511","citationCount":"12","resultStr":"{\"title\":\"Interaction of whole-body hyperthermia and irradiation in the treatment of AKR mouse leukemia.\",\"authors\":\"R A Steeves, H I Robins, K Miller, P Martin, L Shecterle, W Dennis\",\"doi\":\"10.1080/09553008714552511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whole-body hyperthermia (WBH) to 41-42 degrees C combined with fractionated total-body irradiation (TBI) was studied in mice with transplanted AKR leukemia. Mice treated with both TBI and WBH survived longer than mice treated with either modality alone. From other groups of similarly treated mice the spleens were removed, weighed, and assayed for their content of leukemic colony-forming units (CFU) by injecting single-cell suspensions into normal syngeneic recipients. Using this methodology it was determined that the thermal enhancement ratio for WBH combined with TBI was 1.6, and that enhanced killing of leukemia cells occurred irrespective of the sequence of WBH and TBI. Data are presented which relate variables, such as duration of WBH or heating time to target temperature, to the response of neoplastic disease. The implications of these preclinical findings to clinical trials are discussed.</p>\",\"PeriodicalId\":14254,\"journal\":{\"name\":\"International journal of radiation biology and related studies in physics, chemistry, and medicine\",\"volume\":\"52 6\",\"pages\":\"935-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09553008714552511\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology and related studies in physics, chemistry, and medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553008714552511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008714552511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interaction of whole-body hyperthermia and irradiation in the treatment of AKR mouse leukemia.
Whole-body hyperthermia (WBH) to 41-42 degrees C combined with fractionated total-body irradiation (TBI) was studied in mice with transplanted AKR leukemia. Mice treated with both TBI and WBH survived longer than mice treated with either modality alone. From other groups of similarly treated mice the spleens were removed, weighed, and assayed for their content of leukemic colony-forming units (CFU) by injecting single-cell suspensions into normal syngeneic recipients. Using this methodology it was determined that the thermal enhancement ratio for WBH combined with TBI was 1.6, and that enhanced killing of leukemia cells occurred irrespective of the sequence of WBH and TBI. Data are presented which relate variables, such as duration of WBH or heating time to target temperature, to the response of neoplastic disease. The implications of these preclinical findings to clinical trials are discussed.