{"title":"商业蓝光LD抽运一步实现黄色发射的镝活化晶体研究进展","authors":"Yunyun Liu , Chaoyang Tu","doi":"10.1016/j.progsolidstchem.2022.100368","DOIUrl":null,"url":null,"abstract":"<div><p>As is well known, Dy-doped crystals are capable of exhibiting yellow emission in the range of 570–590 nm. Owing to their potential use in the fields of biomedical instruments, optical storage, precision measurements, illumination displays, Bose–Einstein condensation, etc., Dy-activated yellow luminescent crystals have attracted considerable attention. In recent years, due to the widespread use of light-emitting diodes, considerable progress has been made on InGaN/GaN-based blue laser diodes (LDs), which provide a new approach for rare-earth-ion-activated crystals to obtain yellow lasers in one step. This has become a hot topic in the scientific and technological research communities and has prompted the development of research on yellow lasers. Based on Dy-doped crystals, we first summarize the research results and progress that has been made to achieve yellow emission in one step using the blue LD pumping technology. Besides, the prospect of obtaining yellow emission from Dy-activated crystals is also presented. Finally, this review aims to help researchers to further develop Dy-activated crystals with yellow emission under the excitation of blue LDs.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research progress on Dy-activated crystals to realize yellow emission in one step via commercial blue LD pumping\",\"authors\":\"Yunyun Liu , Chaoyang Tu\",\"doi\":\"10.1016/j.progsolidstchem.2022.100368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As is well known, Dy-doped crystals are capable of exhibiting yellow emission in the range of 570–590 nm. Owing to their potential use in the fields of biomedical instruments, optical storage, precision measurements, illumination displays, Bose–Einstein condensation, etc., Dy-activated yellow luminescent crystals have attracted considerable attention. In recent years, due to the widespread use of light-emitting diodes, considerable progress has been made on InGaN/GaN-based blue laser diodes (LDs), which provide a new approach for rare-earth-ion-activated crystals to obtain yellow lasers in one step. This has become a hot topic in the scientific and technological research communities and has prompted the development of research on yellow lasers. Based on Dy-doped crystals, we first summarize the research results and progress that has been made to achieve yellow emission in one step using the blue LD pumping technology. Besides, the prospect of obtaining yellow emission from Dy-activated crystals is also presented. Finally, this review aims to help researchers to further develop Dy-activated crystals with yellow emission under the excitation of blue LDs.</p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007967862200022X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967862200022X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Research progress on Dy-activated crystals to realize yellow emission in one step via commercial blue LD pumping
As is well known, Dy-doped crystals are capable of exhibiting yellow emission in the range of 570–590 nm. Owing to their potential use in the fields of biomedical instruments, optical storage, precision measurements, illumination displays, Bose–Einstein condensation, etc., Dy-activated yellow luminescent crystals have attracted considerable attention. In recent years, due to the widespread use of light-emitting diodes, considerable progress has been made on InGaN/GaN-based blue laser diodes (LDs), which provide a new approach for rare-earth-ion-activated crystals to obtain yellow lasers in one step. This has become a hot topic in the scientific and technological research communities and has prompted the development of research on yellow lasers. Based on Dy-doped crystals, we first summarize the research results and progress that has been made to achieve yellow emission in one step using the blue LD pumping technology. Besides, the prospect of obtaining yellow emission from Dy-activated crystals is also presented. Finally, this review aims to help researchers to further develop Dy-activated crystals with yellow emission under the excitation of blue LDs.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.