{"title":"硝基烷烃作为黄蛋白氧化酶的还原底物。","authors":"D J Porter, J G Voet, H J Bright","doi":"10.1515/znb-1972-0914","DOIUrl":null,"url":null,"abstract":"Nitroalkanes have been found to be general reductive substrates for D-amino acid oxidase, glucose oxidase and L-amino acid oxidase. These enzymes show different specificities for the structure of the nitroalkane substrate. The stoichiometry of the D-amino acid oxidase reaction is straightforward, consisting of the production of one mole each of aldehyde, nitrite and hydrogen peroxide for each mole of nitroalkane and oxygen consumed. The stoichiometry of the glucose oxidase reaction is more complex in that less than one mole of hydrogen peroxide and nitrite is produced and nitrate and traces of 1-dinitroalkane are formed. The kinetics of nitroalkane oxidation show that the nitroalkane anion is much more reactive in reducing the flavin than is the neutral substrate. The pH dependence of flavin reduction strongly suggests that proton abstraction is a necessary event in catalysis. A detailed kinetic mechanism is presented for the oxidation of nitroethane by glucose. It has been possible to trap a form of modified flavin in the reaction of D-amino acid oxidase with nitromethane from which oxidized FAD can be regenerated in aqueous solution in the presence of oxygen.","PeriodicalId":78857,"journal":{"name":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","volume":"27 9","pages":"1052-3"},"PeriodicalIF":0.0000,"publicationDate":"1972-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/znb-1972-0914","citationCount":"11","resultStr":"{\"title\":\"Nitroalkanes as reductive substrates for flavoprotein oxidases.\",\"authors\":\"D J Porter, J G Voet, H J Bright\",\"doi\":\"10.1515/znb-1972-0914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitroalkanes have been found to be general reductive substrates for D-amino acid oxidase, glucose oxidase and L-amino acid oxidase. These enzymes show different specificities for the structure of the nitroalkane substrate. The stoichiometry of the D-amino acid oxidase reaction is straightforward, consisting of the production of one mole each of aldehyde, nitrite and hydrogen peroxide for each mole of nitroalkane and oxygen consumed. The stoichiometry of the glucose oxidase reaction is more complex in that less than one mole of hydrogen peroxide and nitrite is produced and nitrate and traces of 1-dinitroalkane are formed. The kinetics of nitroalkane oxidation show that the nitroalkane anion is much more reactive in reducing the flavin than is the neutral substrate. The pH dependence of flavin reduction strongly suggests that proton abstraction is a necessary event in catalysis. A detailed kinetic mechanism is presented for the oxidation of nitroethane by glucose. It has been possible to trap a form of modified flavin in the reaction of D-amino acid oxidase with nitromethane from which oxidized FAD can be regenerated in aqueous solution in the presence of oxygen.\",\"PeriodicalId\":78857,\"journal\":{\"name\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"volume\":\"27 9\",\"pages\":\"1052-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/znb-1972-0914\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-1972-0914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-1972-0914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nitroalkanes as reductive substrates for flavoprotein oxidases.
Nitroalkanes have been found to be general reductive substrates for D-amino acid oxidase, glucose oxidase and L-amino acid oxidase. These enzymes show different specificities for the structure of the nitroalkane substrate. The stoichiometry of the D-amino acid oxidase reaction is straightforward, consisting of the production of one mole each of aldehyde, nitrite and hydrogen peroxide for each mole of nitroalkane and oxygen consumed. The stoichiometry of the glucose oxidase reaction is more complex in that less than one mole of hydrogen peroxide and nitrite is produced and nitrate and traces of 1-dinitroalkane are formed. The kinetics of nitroalkane oxidation show that the nitroalkane anion is much more reactive in reducing the flavin than is the neutral substrate. The pH dependence of flavin reduction strongly suggests that proton abstraction is a necessary event in catalysis. A detailed kinetic mechanism is presented for the oxidation of nitroethane by glucose. It has been possible to trap a form of modified flavin in the reaction of D-amino acid oxidase with nitromethane from which oxidized FAD can be regenerated in aqueous solution in the presence of oxygen.