nadph -亚硫酸盐还原酶中黄素的相互作用。

L M Siegel, E J Faeder, H Kamin
{"title":"nadph -亚硫酸盐还原酶中黄素的相互作用。","authors":"L M Siegel, E J Faeder, H Kamin","doi":"10.1515/znb-1972-0929","DOIUrl":null,"url":null,"abstract":"E. coli NADPH-sulfite reductase, depleted of FMN but retaining its FAD, has been prepared by photoirradiation of native enzyme in 30% — saturated ammonium sulfate. FMN-depleted enzyme loses its ability to reduce (using NADPH) ferricyanide, cytochrome c, sulfite, or the enzyme’s own heme-like chromophore. However, the FAD remains rapidly reducible by NADPH, and the FMN-depleted enzyme retains NADPH-acetylpyridine NADP* transhydrogenase activity. Thus, FAD can serve as entry port for NADPH electrons, and FMN is required for further transmission along the enzyme’s electron transport chain. These data, plus other studies, have enabled us to suggest a mechanism for catalysis which involves FAD cycling between the fully-oxidized and fully-reduced forms while FMN cycles between fully-reduced and semiquinone. This mechanism, which includes a disproportionation step, permits a “step-down” from the twoelectron donor, NADPH, to a succession of equipotential one-electron transfer steps.","PeriodicalId":78857,"journal":{"name":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","volume":"27 9","pages":"1087-9"},"PeriodicalIF":0.0000,"publicationDate":"1972-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/znb-1972-0929","citationCount":"24","resultStr":"{\"title\":\"Flavin interaction in NADPH-sulfite reductase.\",\"authors\":\"L M Siegel, E J Faeder, H Kamin\",\"doi\":\"10.1515/znb-1972-0929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E. coli NADPH-sulfite reductase, depleted of FMN but retaining its FAD, has been prepared by photoirradiation of native enzyme in 30% — saturated ammonium sulfate. FMN-depleted enzyme loses its ability to reduce (using NADPH) ferricyanide, cytochrome c, sulfite, or the enzyme’s own heme-like chromophore. However, the FAD remains rapidly reducible by NADPH, and the FMN-depleted enzyme retains NADPH-acetylpyridine NADP* transhydrogenase activity. Thus, FAD can serve as entry port for NADPH electrons, and FMN is required for further transmission along the enzyme’s electron transport chain. These data, plus other studies, have enabled us to suggest a mechanism for catalysis which involves FAD cycling between the fully-oxidized and fully-reduced forms while FMN cycles between fully-reduced and semiquinone. This mechanism, which includes a disproportionation step, permits a “step-down” from the twoelectron donor, NADPH, to a succession of equipotential one-electron transfer steps.\",\"PeriodicalId\":78857,\"journal\":{\"name\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"volume\":\"27 9\",\"pages\":\"1087-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/znb-1972-0929\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-1972-0929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-1972-0929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flavin interaction in NADPH-sulfite reductase.
E. coli NADPH-sulfite reductase, depleted of FMN but retaining its FAD, has been prepared by photoirradiation of native enzyme in 30% — saturated ammonium sulfate. FMN-depleted enzyme loses its ability to reduce (using NADPH) ferricyanide, cytochrome c, sulfite, or the enzyme’s own heme-like chromophore. However, the FAD remains rapidly reducible by NADPH, and the FMN-depleted enzyme retains NADPH-acetylpyridine NADP* transhydrogenase activity. Thus, FAD can serve as entry port for NADPH electrons, and FMN is required for further transmission along the enzyme’s electron transport chain. These data, plus other studies, have enabled us to suggest a mechanism for catalysis which involves FAD cycling between the fully-oxidized and fully-reduced forms while FMN cycles between fully-reduced and semiquinone. This mechanism, which includes a disproportionation step, permits a “step-down” from the twoelectron donor, NADPH, to a succession of equipotential one-electron transfer steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[IR, Raman, 1 H-NMR spectra and acidity constants of the cytostatic Hadacidin and its mono alkali salts]. [UV-dimerization of 1,3-dimethyluracil in ice-matrix]. [Structure determination of dimeric 1,3-dimethyl-uracils by 1 H-NMR-spectroscopy]. [Kinetic and chemical study of succinyl papain]. Loss of biological activity of bacteriophage 2C and degradation of its DNA in storage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1