F Koenig, W Menke, H Craubner, G H Schmid, A Radunz
{"title":"叶绿体中具有光化学活性的含叶绿素蛋白质及其在类囊体膜中的定位。","authors":"F Koenig, W Menke, H Craubner, G H Schmid, A Radunz","doi":"10.1515/znb-1972-1023","DOIUrl":null,"url":null,"abstract":"After solubilization of stroma-freed chloroplasts with deoxycholate, the lipids and the detergent used are separated from the proteins by gel filtration. In this way not denatured pigment-con-taining protein preparations were obtained. The particles in fraction 1 exhibited a molecular weight of 600 000 and contained an average of 25 chlorophyll molecules. The circular dichroism spectrum showed exciton splitting of the red band. The particles in fraction 2 contained 1 chlorophyll molecule and exhibited a molecular weight of 110 000. The particles in fraction 3 also contained only 1 chlorophyll molecule and had a molecular weight of between 80 000 and 100 000. Pure preparations of fraction 1 only carried out the methylviologen Mehler reaction with the dichlorophenol indophenol/ascorbate couple as electron donor. Fraction 3 only reduced ferricyanide with diphenylcarbazide as an electron donor in the light. Fraction 2 exhibited both the photosystem I reaction and the photosystem II reaction. An antiserum to extracted fraction 1 does not inhibit electron transport in the intact lamellar system. The photoreduction of methylviologen is only inhibited after disruption of the thylakoids. The antiserum to fraction 2 inhibits the photoreduction of methylviologen in the intact lamellar system. Consequently, one inhibition site for this photosystem I reaction must be located on the inner and another on the outer surface of the thylakoid membrane. In addition, antibodies to fraction 1 are specifically adsorbed onto the lamellar system without any effect on electron transport and without a concomitant agglutination. Antibodies to fraction 3 partially inhibit the photoreduction of ferricyanide with diphenylcarbazide as an electron donor in the intact lamellar system. Hence, the inhibition site of this system II reaction is located on the outer surface of the thylakoids. We have reason to believe that the inhibition sites not reacting are located in the partitions, which are not accessible to antibodies.","PeriodicalId":78857,"journal":{"name":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","volume":"27 10","pages":"1225-38"},"PeriodicalIF":0.0000,"publicationDate":"1972-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/znb-1972-1023","citationCount":"13","resultStr":"{\"title\":\"Photochemically active chlorophyll-containing proteins from chloroplasts and their localization in the thylakoid membrane.\",\"authors\":\"F Koenig, W Menke, H Craubner, G H Schmid, A Radunz\",\"doi\":\"10.1515/znb-1972-1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After solubilization of stroma-freed chloroplasts with deoxycholate, the lipids and the detergent used are separated from the proteins by gel filtration. In this way not denatured pigment-con-taining protein preparations were obtained. The particles in fraction 1 exhibited a molecular weight of 600 000 and contained an average of 25 chlorophyll molecules. The circular dichroism spectrum showed exciton splitting of the red band. The particles in fraction 2 contained 1 chlorophyll molecule and exhibited a molecular weight of 110 000. The particles in fraction 3 also contained only 1 chlorophyll molecule and had a molecular weight of between 80 000 and 100 000. Pure preparations of fraction 1 only carried out the methylviologen Mehler reaction with the dichlorophenol indophenol/ascorbate couple as electron donor. Fraction 3 only reduced ferricyanide with diphenylcarbazide as an electron donor in the light. Fraction 2 exhibited both the photosystem I reaction and the photosystem II reaction. An antiserum to extracted fraction 1 does not inhibit electron transport in the intact lamellar system. The photoreduction of methylviologen is only inhibited after disruption of the thylakoids. The antiserum to fraction 2 inhibits the photoreduction of methylviologen in the intact lamellar system. Consequently, one inhibition site for this photosystem I reaction must be located on the inner and another on the outer surface of the thylakoid membrane. In addition, antibodies to fraction 1 are specifically adsorbed onto the lamellar system without any effect on electron transport and without a concomitant agglutination. Antibodies to fraction 3 partially inhibit the photoreduction of ferricyanide with diphenylcarbazide as an electron donor in the intact lamellar system. Hence, the inhibition site of this system II reaction is located on the outer surface of the thylakoids. We have reason to believe that the inhibition sites not reacting are located in the partitions, which are not accessible to antibodies.\",\"PeriodicalId\":78857,\"journal\":{\"name\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"volume\":\"27 10\",\"pages\":\"1225-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/znb-1972-1023\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-1972-1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-1972-1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photochemically active chlorophyll-containing proteins from chloroplasts and their localization in the thylakoid membrane.
After solubilization of stroma-freed chloroplasts with deoxycholate, the lipids and the detergent used are separated from the proteins by gel filtration. In this way not denatured pigment-con-taining protein preparations were obtained. The particles in fraction 1 exhibited a molecular weight of 600 000 and contained an average of 25 chlorophyll molecules. The circular dichroism spectrum showed exciton splitting of the red band. The particles in fraction 2 contained 1 chlorophyll molecule and exhibited a molecular weight of 110 000. The particles in fraction 3 also contained only 1 chlorophyll molecule and had a molecular weight of between 80 000 and 100 000. Pure preparations of fraction 1 only carried out the methylviologen Mehler reaction with the dichlorophenol indophenol/ascorbate couple as electron donor. Fraction 3 only reduced ferricyanide with diphenylcarbazide as an electron donor in the light. Fraction 2 exhibited both the photosystem I reaction and the photosystem II reaction. An antiserum to extracted fraction 1 does not inhibit electron transport in the intact lamellar system. The photoreduction of methylviologen is only inhibited after disruption of the thylakoids. The antiserum to fraction 2 inhibits the photoreduction of methylviologen in the intact lamellar system. Consequently, one inhibition site for this photosystem I reaction must be located on the inner and another on the outer surface of the thylakoid membrane. In addition, antibodies to fraction 1 are specifically adsorbed onto the lamellar system without any effect on electron transport and without a concomitant agglutination. Antibodies to fraction 3 partially inhibit the photoreduction of ferricyanide with diphenylcarbazide as an electron donor in the intact lamellar system. Hence, the inhibition site of this system II reaction is located on the outer surface of the thylakoids. We have reason to believe that the inhibition sites not reacting are located in the partitions, which are not accessible to antibodies.