外加静电场对蛋白质晶体成核和生长动力学影响的理论与实践研究

IF 4.5 2区 材料科学 Q1 CRYSTALLOGRAPHY Progress in Crystal Growth and Characterization of Materials Pub Date : 2022-08-01 DOI:10.1016/j.pcrysgrow.2022.100568
Haruhiko Koizumi , Satoshi Uda
{"title":"外加静电场对蛋白质晶体成核和生长动力学影响的理论与实践研究","authors":"Haruhiko Koizumi ,&nbsp;Satoshi Uda","doi":"10.1016/j.pcrysgrow.2022.100568","DOIUrl":null,"url":null,"abstract":"<div><p>The crystallization technique where an electric field is applied is an extremely powerful tool to control the crystallization processes of various materials. In particular, the method with application of an external electrostatic electric field can have a significant effect on the phase equilibrium of the liquid and solid phases. This review demonstrates that the crystallization processes of proteins are significantly impacted by the application of an external electrostatic electric field: (1) Control of both the increase and decrease in the nucleation rate can be achieved by changing the applied frequency of the external electrostatic electric field. (2) The effect of the external electrostatic electric field on the nucleation rate can be controlled by regulating the thickness of the electric double layer (EDL) formed at the interface. (3) The quality of the grown crystals can be improved by an increase in the step free energy under application of an external electrostatic electric field at 1 MHz. The effect of the external electrostatic electric field on nucleation and growth kinetics during crystal growth of proteins is also discussed based on a thermodynamic perspective.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 3","pages":"Article 100568"},"PeriodicalIF":4.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical and Practical Studies on Effects of External Electrostatic Electric Field on Nucleation and Growth Kinetics of Protein Crystals\",\"authors\":\"Haruhiko Koizumi ,&nbsp;Satoshi Uda\",\"doi\":\"10.1016/j.pcrysgrow.2022.100568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The crystallization technique where an electric field is applied is an extremely powerful tool to control the crystallization processes of various materials. In particular, the method with application of an external electrostatic electric field can have a significant effect on the phase equilibrium of the liquid and solid phases. This review demonstrates that the crystallization processes of proteins are significantly impacted by the application of an external electrostatic electric field: (1) Control of both the increase and decrease in the nucleation rate can be achieved by changing the applied frequency of the external electrostatic electric field. (2) The effect of the external electrostatic electric field on the nucleation rate can be controlled by regulating the thickness of the electric double layer (EDL) formed at the interface. (3) The quality of the grown crystals can be improved by an increase in the step free energy under application of an external electrostatic electric field at 1 MHz. The effect of the external electrostatic electric field on nucleation and growth kinetics during crystal growth of proteins is also discussed based on a thermodynamic perspective.</p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":\"68 3\",\"pages\":\"Article 100568\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897422000110\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897422000110","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

施加电场的结晶技术是控制各种材料结晶过程的一种极为有力的工具。特别是外加静电场的方法对液固两相的相平衡有显著的影响。本文的研究表明,外加静电场对蛋白质的结晶过程有显著的影响:(1)通过改变外加静电场的施加频率可以控制成核速率的增加和减少。(2)外部静电场对成核速率的影响可以通过调节界面处形成的双电层(EDL)的厚度来控制。(3)在1 MHz的外加静电场下,增加阶跃自由能可以提高生长晶体的质量。本文还从热力学角度讨论了外加静电场对蛋白质晶体生长过程中成核和生长动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical and Practical Studies on Effects of External Electrostatic Electric Field on Nucleation and Growth Kinetics of Protein Crystals

The crystallization technique where an electric field is applied is an extremely powerful tool to control the crystallization processes of various materials. In particular, the method with application of an external electrostatic electric field can have a significant effect on the phase equilibrium of the liquid and solid phases. This review demonstrates that the crystallization processes of proteins are significantly impacted by the application of an external electrostatic electric field: (1) Control of both the increase and decrease in the nucleation rate can be achieved by changing the applied frequency of the external electrostatic electric field. (2) The effect of the external electrostatic electric field on the nucleation rate can be controlled by regulating the thickness of the electric double layer (EDL) formed at the interface. (3) The quality of the grown crystals can be improved by an increase in the step free energy under application of an external electrostatic electric field at 1 MHz. The effect of the external electrostatic electric field on nucleation and growth kinetics during crystal growth of proteins is also discussed based on a thermodynamic perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Crystal Growth and Characterization of Materials
Progress in Crystal Growth and Characterization of Materials 工程技术-材料科学:表征与测试
CiteScore
8.80
自引率
2.00%
发文量
10
审稿时长
1 day
期刊介绍: Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research. Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.
期刊最新文献
Novel enhancing materials for biosensor design: The case studies of erbium-, gadolinium- and strontium-doped Ca10(PO4)6(OH)2 hydroxyapatite Editorial Board Electrospray crystallization: A review on submicrometric and nanosized crystal synthesis Editorial Board The equation of life in the Universe: Biomorphs as reminiscence of the first forms of life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1