Karim Khan , Ayesha Khan Tareen , Muhammad Iqbal , Lude Wang , Chunyang Ma , Zhe Shi , Zhang Ye , Waqas Ahmad , Rizwan Ur Rehman Sagar , S. Saqib Shams , Ponjar Joice Sophia , Zaka Ullah , Zhongjian Xie , Zhongyi Guo , Han Zhang
{"title":"导航单元素材料(Xenes)的最新进展-生物医学应用的基础","authors":"Karim Khan , Ayesha Khan Tareen , Muhammad Iqbal , Lude Wang , Chunyang Ma , Zhe Shi , Zhang Ye , Waqas Ahmad , Rizwan Ur Rehman Sagar , S. Saqib Shams , Ponjar Joice Sophia , Zaka Ullah , Zhongjian Xie , Zhongyi Guo , Han Zhang","doi":"10.1016/j.progsolidstchem.2021.100326","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of new two-dimensional materials (2DMs), especially the monoelemental materials (Xenes), in various fields of technology for their uses has shown potential nature, additionally, to fundamental science, addressing the new discoveries. The 2DMs Xenes (e.g., Group-IIIA (Borophene (2D-B), Gallenene (2D-Ga), and Aluminene (2D-Al)) Group-IVA (Silicene (2D-Si), Germanene (2D-Ge), Stanene (2D-Sn), and Graphene (2D-G)), Group-VA (Phosphorous (2D-P), Arsenene (2D-As), Antimonene (2D-Sb), and Bismuthene (2D-Bi)), Group-VIA (Tellurene (2D-Te) and Selenene(2D-Se)) for synthetic exploration are chemically tractable materials as considered capable mediators for biomedical applications due to their outstanding chemical, physical, optical and electronic properties, as well as in more than a number of other new bio-uses. In this timely updated review, we explained in detail the categorization of 2D-Xenes derived from their bulkiness properties. We also summarized the modification in synthetic methods of 2D-Xenes as well as their general properties. Moreover, for different biomedical uses the representative 2D-Xenes nanoplatforms are highlighted. At the end of this review, 2D-Xenes in the biomedicines research progress, perspectives, and challenges are discussed.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2021.100326","citationCount":"13","resultStr":"{\"title\":\"Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications\",\"authors\":\"Karim Khan , Ayesha Khan Tareen , Muhammad Iqbal , Lude Wang , Chunyang Ma , Zhe Shi , Zhang Ye , Waqas Ahmad , Rizwan Ur Rehman Sagar , S. Saqib Shams , Ponjar Joice Sophia , Zaka Ullah , Zhongjian Xie , Zhongyi Guo , Han Zhang\",\"doi\":\"10.1016/j.progsolidstchem.2021.100326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emergence of new two-dimensional materials (2DMs), especially the monoelemental materials (Xenes), in various fields of technology for their uses has shown potential nature, additionally, to fundamental science, addressing the new discoveries. The 2DMs Xenes (e.g., Group-IIIA (Borophene (2D-B), Gallenene (2D-Ga), and Aluminene (2D-Al)) Group-IVA (Silicene (2D-Si), Germanene (2D-Ge), Stanene (2D-Sn), and Graphene (2D-G)), Group-VA (Phosphorous (2D-P), Arsenene (2D-As), Antimonene (2D-Sb), and Bismuthene (2D-Bi)), Group-VIA (Tellurene (2D-Te) and Selenene(2D-Se)) for synthetic exploration are chemically tractable materials as considered capable mediators for biomedical applications due to their outstanding chemical, physical, optical and electronic properties, as well as in more than a number of other new bio-uses. In this timely updated review, we explained in detail the categorization of 2D-Xenes derived from their bulkiness properties. We also summarized the modification in synthetic methods of 2D-Xenes as well as their general properties. Moreover, for different biomedical uses the representative 2D-Xenes nanoplatforms are highlighted. At the end of this review, 2D-Xenes in the biomedicines research progress, perspectives, and challenges are discussed.</p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2021.100326\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678621000194\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678621000194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications
The emergence of new two-dimensional materials (2DMs), especially the monoelemental materials (Xenes), in various fields of technology for their uses has shown potential nature, additionally, to fundamental science, addressing the new discoveries. The 2DMs Xenes (e.g., Group-IIIA (Borophene (2D-B), Gallenene (2D-Ga), and Aluminene (2D-Al)) Group-IVA (Silicene (2D-Si), Germanene (2D-Ge), Stanene (2D-Sn), and Graphene (2D-G)), Group-VA (Phosphorous (2D-P), Arsenene (2D-As), Antimonene (2D-Sb), and Bismuthene (2D-Bi)), Group-VIA (Tellurene (2D-Te) and Selenene(2D-Se)) for synthetic exploration are chemically tractable materials as considered capable mediators for biomedical applications due to their outstanding chemical, physical, optical and electronic properties, as well as in more than a number of other new bio-uses. In this timely updated review, we explained in detail the categorization of 2D-Xenes derived from their bulkiness properties. We also summarized the modification in synthetic methods of 2D-Xenes as well as their general properties. Moreover, for different biomedical uses the representative 2D-Xenes nanoplatforms are highlighted. At the end of this review, 2D-Xenes in the biomedicines research progress, perspectives, and challenges are discussed.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.