{"title":"水溶性单体自由基聚合动力学","authors":"Michael Buback , Robin A. Hutchinson , Igor Lacík","doi":"10.1016/j.progpolymsci.2022.101645","DOIUrl":null,"url":null,"abstract":"<div><p><span>Radical polymerization<span> of monomers with functional groups such as carboxylic acid and amide moieties yields materials of significant technical importance. The reactions are mostly carried out in aqueous phase, which provides the additional advantage of using a cheap and benign solvent. In addition to varying monomer concentration, temperature and pressure, the kinetics and thus the </span></span>polymer properties<span> may be tuned by varying the degree of monomer ionization, by changing pH and ionic strength<span> of the aqueous solution, and by addition of an organic cosolvent. These systems exhibit strong interactions via hydrogen bonds<span> resulting in large effects on rate coefficients, even for propagation, which for long have been considered as almost insensitive towards solvent environment. The determination of rate coefficients in aqueous solution largely assists the understanding of the impact of intermolecular interactions on polymerization rate. Despite the enormous importance of polymers produced by radical polymerization in aqueous solution, the associated mechanism and the availability of accurate rate coefficients have been very limited. This situation has improved by applying pulsed-laser techniques, which enable the precise measurement of individual rate coefficients in aqueous solution as required for the simulation of radical polymerization processes.</span></span></span></p><p>This review primarily addresses the two most important rate coefficients, i.e., those for propagation and termination, with the diffusion-controlled termination step depending on radical chain length. Both rate coefficients have been studied over a wide range of reaction conditions. The enormous improvement in data quality reached by using methods such as pulsed-laser polymerization (PLP) – size-exclusion chromatography (SEC) and single pulse (SP) – PLP – electron paramagnetic resonance (EPR) spectroscopy is illustrated. Outlined are results for homopolymerizations of non-ionized monomers, subdivided into monomers which may or may not undergo backbiting. This reaction adds considerable complexity, as backbiting results in the formation of midchain radicals with reactivity differing largely from the one of chain-end radicals. The kinetic investigations have been extended to partially and fully ionized monomers. Examples are given of how the rate coefficients from PLP experiments are used to simulate polymerization kinetics and polymer properties of continuously-initiated systems. The review demonstrates that the basic kinetic concepts for conventional radical polymerization in organic media also apply towards polymerization of monomers in aqueous solution.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"138 ","pages":"Article 101645"},"PeriodicalIF":26.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Radical polymerization kinetics of water-soluble monomers\",\"authors\":\"Michael Buback , Robin A. Hutchinson , Igor Lacík\",\"doi\":\"10.1016/j.progpolymsci.2022.101645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Radical polymerization<span> of monomers with functional groups such as carboxylic acid and amide moieties yields materials of significant technical importance. The reactions are mostly carried out in aqueous phase, which provides the additional advantage of using a cheap and benign solvent. In addition to varying monomer concentration, temperature and pressure, the kinetics and thus the </span></span>polymer properties<span> may be tuned by varying the degree of monomer ionization, by changing pH and ionic strength<span> of the aqueous solution, and by addition of an organic cosolvent. These systems exhibit strong interactions via hydrogen bonds<span> resulting in large effects on rate coefficients, even for propagation, which for long have been considered as almost insensitive towards solvent environment. The determination of rate coefficients in aqueous solution largely assists the understanding of the impact of intermolecular interactions on polymerization rate. Despite the enormous importance of polymers produced by radical polymerization in aqueous solution, the associated mechanism and the availability of accurate rate coefficients have been very limited. This situation has improved by applying pulsed-laser techniques, which enable the precise measurement of individual rate coefficients in aqueous solution as required for the simulation of radical polymerization processes.</span></span></span></p><p>This review primarily addresses the two most important rate coefficients, i.e., those for propagation and termination, with the diffusion-controlled termination step depending on radical chain length. Both rate coefficients have been studied over a wide range of reaction conditions. The enormous improvement in data quality reached by using methods such as pulsed-laser polymerization (PLP) – size-exclusion chromatography (SEC) and single pulse (SP) – PLP – electron paramagnetic resonance (EPR) spectroscopy is illustrated. Outlined are results for homopolymerizations of non-ionized monomers, subdivided into monomers which may or may not undergo backbiting. This reaction adds considerable complexity, as backbiting results in the formation of midchain radicals with reactivity differing largely from the one of chain-end radicals. The kinetic investigations have been extended to partially and fully ionized monomers. Examples are given of how the rate coefficients from PLP experiments are used to simulate polymerization kinetics and polymer properties of continuously-initiated systems. The review demonstrates that the basic kinetic concepts for conventional radical polymerization in organic media also apply towards polymerization of monomers in aqueous solution.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"138 \",\"pages\":\"Article 101645\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670022001435\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670022001435","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Radical polymerization kinetics of water-soluble monomers
Radical polymerization of monomers with functional groups such as carboxylic acid and amide moieties yields materials of significant technical importance. The reactions are mostly carried out in aqueous phase, which provides the additional advantage of using a cheap and benign solvent. In addition to varying monomer concentration, temperature and pressure, the kinetics and thus the polymer properties may be tuned by varying the degree of monomer ionization, by changing pH and ionic strength of the aqueous solution, and by addition of an organic cosolvent. These systems exhibit strong interactions via hydrogen bonds resulting in large effects on rate coefficients, even for propagation, which for long have been considered as almost insensitive towards solvent environment. The determination of rate coefficients in aqueous solution largely assists the understanding of the impact of intermolecular interactions on polymerization rate. Despite the enormous importance of polymers produced by radical polymerization in aqueous solution, the associated mechanism and the availability of accurate rate coefficients have been very limited. This situation has improved by applying pulsed-laser techniques, which enable the precise measurement of individual rate coefficients in aqueous solution as required for the simulation of radical polymerization processes.
This review primarily addresses the two most important rate coefficients, i.e., those for propagation and termination, with the diffusion-controlled termination step depending on radical chain length. Both rate coefficients have been studied over a wide range of reaction conditions. The enormous improvement in data quality reached by using methods such as pulsed-laser polymerization (PLP) – size-exclusion chromatography (SEC) and single pulse (SP) – PLP – electron paramagnetic resonance (EPR) spectroscopy is illustrated. Outlined are results for homopolymerizations of non-ionized monomers, subdivided into monomers which may or may not undergo backbiting. This reaction adds considerable complexity, as backbiting results in the formation of midchain radicals with reactivity differing largely from the one of chain-end radicals. The kinetic investigations have been extended to partially and fully ionized monomers. Examples are given of how the rate coefficients from PLP experiments are used to simulate polymerization kinetics and polymer properties of continuously-initiated systems. The review demonstrates that the basic kinetic concepts for conventional radical polymerization in organic media also apply towards polymerization of monomers in aqueous solution.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.