金属中热声子物理的性质和挑战:MgB2和其他化合物

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Progress in Surface Science Pub Date : 2022-08-01 DOI:10.1016/j.progsurf.2022.100664
Emmanuele Cappelluti , Fabio Caruso , Dino Novko
{"title":"金属中热声子物理的性质和挑战:MgB2和其他化合物","authors":"Emmanuele Cappelluti ,&nbsp;Fabio Caruso ,&nbsp;Dino Novko","doi":"10.1016/j.progsurf.2022.100664","DOIUrl":null,"url":null,"abstract":"<div><p>The ultrafast dynamics of electrons and collective modes in systems out of equilibrium is crucially governed by the energy transfer from electronic degrees of freedom, where the energy of the pump source is usually absorbed, to lattice degrees of freedom. In conventional metals such process leads to an overall heating of the lattice, usually described by an effective lattice temperature <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ph</mi></mrow></msub></mrow></math></span>, until final equilibrium with all the degrees of freedom is reached. In specific materials, however, few lattice modes provide a preferential channel for the energy transfer, leading to a non-thermal distribution of vibrations and to the onset of <span><em>hot </em><em>phonons</em></span><span>, i.e., lattice modes with a much higher population than the other modes. Hot phonons are usually encountered in semiconductors or semimetal<span> compounds, like graphene, where the preferential channel towards hot modes is dictated by the reduced electronic phase space. Following a different path, the possibility of obtaining hot-phonon physics also in metals has been also recently prompted in literature, as a result of a strong anisotropy of the electron–phonon (el-ph) coupling. In the present paper, taking MgB</span></span><sub>2</sub> as a representative example, we review the physical conditions that allow a hot-phonon scenario in metals with anisotropic el-ph coupling, and we discuss the observable fingerprints of hot phonons. Novel perspectives towards the prediction and experimental observation of hot phonons in other metallic compounds are also discussed.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"97 3","pages":"Article 100664"},"PeriodicalIF":8.7000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Properties and challenges of hot-phonon physics in metals: MgB2 and other compounds\",\"authors\":\"Emmanuele Cappelluti ,&nbsp;Fabio Caruso ,&nbsp;Dino Novko\",\"doi\":\"10.1016/j.progsurf.2022.100664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ultrafast dynamics of electrons and collective modes in systems out of equilibrium is crucially governed by the energy transfer from electronic degrees of freedom, where the energy of the pump source is usually absorbed, to lattice degrees of freedom. In conventional metals such process leads to an overall heating of the lattice, usually described by an effective lattice temperature <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ph</mi></mrow></msub></mrow></math></span>, until final equilibrium with all the degrees of freedom is reached. In specific materials, however, few lattice modes provide a preferential channel for the energy transfer, leading to a non-thermal distribution of vibrations and to the onset of <span><em>hot </em><em>phonons</em></span><span>, i.e., lattice modes with a much higher population than the other modes. Hot phonons are usually encountered in semiconductors or semimetal<span> compounds, like graphene, where the preferential channel towards hot modes is dictated by the reduced electronic phase space. Following a different path, the possibility of obtaining hot-phonon physics also in metals has been also recently prompted in literature, as a result of a strong anisotropy of the electron–phonon (el-ph) coupling. In the present paper, taking MgB</span></span><sub>2</sub> as a representative example, we review the physical conditions that allow a hot-phonon scenario in metals with anisotropic el-ph coupling, and we discuss the observable fingerprints of hot phonons. Novel perspectives towards the prediction and experimental observation of hot phonons in other metallic compounds are also discussed.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"97 3\",\"pages\":\"Article 100664\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681622000119\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681622000119","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

摘要

非平衡系统中电子和集体模式的超快动力学关键是由电子自由度的能量转移控制的,在电子自由度中,泵浦源的能量通常被吸收到晶格自由度。在传统金属中,这种过程导致晶格的整体加热,通常用有效晶格温度Tph来描述,直到达到所有自由度的最终平衡。然而,在特定的材料中,很少有晶格模式为能量传递提供了优先通道,导致振动的非热分布和热声子的开始,即晶格模式的人口比其他模式高得多。热声子通常在半导体或半金属化合物中遇到,如石墨烯,其中向热模式的优先通道是由减少的电子相空间决定的。在不同的路径下,由于电子-声子(el-ph)耦合的强各向异性,最近在文献中也提示了在金属中获得热声子物理的可能性。本文以MgB2为代表,回顾了金属中具有各向异性el-ph耦合的热声子场景的物理条件,并讨论了热声子的可观测指纹。讨论了热声子在其他金属化合物中的预测和实验观察的新前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Properties and challenges of hot-phonon physics in metals: MgB2 and other compounds

The ultrafast dynamics of electrons and collective modes in systems out of equilibrium is crucially governed by the energy transfer from electronic degrees of freedom, where the energy of the pump source is usually absorbed, to lattice degrees of freedom. In conventional metals such process leads to an overall heating of the lattice, usually described by an effective lattice temperature Tph, until final equilibrium with all the degrees of freedom is reached. In specific materials, however, few lattice modes provide a preferential channel for the energy transfer, leading to a non-thermal distribution of vibrations and to the onset of hot phonons, i.e., lattice modes with a much higher population than the other modes. Hot phonons are usually encountered in semiconductors or semimetal compounds, like graphene, where the preferential channel towards hot modes is dictated by the reduced electronic phase space. Following a different path, the possibility of obtaining hot-phonon physics also in metals has been also recently prompted in literature, as a result of a strong anisotropy of the electron–phonon (el-ph) coupling. In the present paper, taking MgB2 as a representative example, we review the physical conditions that allow a hot-phonon scenario in metals with anisotropic el-ph coupling, and we discuss the observable fingerprints of hot phonons. Novel perspectives towards the prediction and experimental observation of hot phonons in other metallic compounds are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
期刊最新文献
Editorial Board Current perspective towards a general framework to describe and harness friction at the nanoscale Time-resolved photoemission electron microscopy of semiconductor interfaces Editorial Board Structural dynamics in atomic indium wires on silicon: From ultrafast probing to coherent vibrational control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1