阴离子共价有机框架工程高性能聚酰胺膜去除二价阴离子

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2022-05-15 DOI:10.1016/j.memsci.2022.120451
Guangzhe Wang , Jinqiu Yuan , Junhui Zhao , Yafei Li , Runnan Zhang , Jianliang Shen , Xiaoyao Wang , Hong Wu , Ayman El-Gendi , Yanlei Su , Zhongyi Jiang
{"title":"阴离子共价有机框架工程高性能聚酰胺膜去除二价阴离子","authors":"Guangzhe Wang ,&nbsp;Jinqiu Yuan ,&nbsp;Junhui Zhao ,&nbsp;Yafei Li ,&nbsp;Runnan Zhang ,&nbsp;Jianliang Shen ,&nbsp;Xiaoyao Wang ,&nbsp;Hong Wu ,&nbsp;Ayman El-Gendi ,&nbsp;Yanlei Su ,&nbsp;Zhongyi Jiang","doi":"10.1016/j.memsci.2022.120451","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Porous framework materials hold great promise in tuning the chemical and physical structure of polyamide<span> membranes for efficient nanofiltration<span>. In this work, anionic covalent organic framework (aCOF) with abundant sulfonic acid groups was embedded into polyamide matrix via interfacial polymerization to modulate both membrane charge property and thickness for the removal of divalent ions. Benefiting from the high negative charged density, aCOF not only enhanced the membrane electronegativity from −25.6 mV to −71.5 mV but also slowed down the diffusion rate of piperazine by </span></span></span>electrostatic interaction to decrease the membrane thickness from 93 nm to 18 nm. The enhanced electronegativity can intensify the charge exclusion to divalent anions (Na</span><sub>2</sub>SO<sub>4</sub> rejection above 97%), while the ultrathin structure endows membrane with high water permeance of up to 39 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, about 2.4 times higher than that of pristine PA membrane. Our membranes provide a new path to rational design and controllable construction of high-performance nanofiltration membranes.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal\",\"authors\":\"Guangzhe Wang ,&nbsp;Jinqiu Yuan ,&nbsp;Junhui Zhao ,&nbsp;Yafei Li ,&nbsp;Runnan Zhang ,&nbsp;Jianliang Shen ,&nbsp;Xiaoyao Wang ,&nbsp;Hong Wu ,&nbsp;Ayman El-Gendi ,&nbsp;Yanlei Su ,&nbsp;Zhongyi Jiang\",\"doi\":\"10.1016/j.memsci.2022.120451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Porous framework materials hold great promise in tuning the chemical and physical structure of polyamide<span> membranes for efficient nanofiltration<span>. In this work, anionic covalent organic framework (aCOF) with abundant sulfonic acid groups was embedded into polyamide matrix via interfacial polymerization to modulate both membrane charge property and thickness for the removal of divalent ions. Benefiting from the high negative charged density, aCOF not only enhanced the membrane electronegativity from −25.6 mV to −71.5 mV but also slowed down the diffusion rate of piperazine by </span></span></span>electrostatic interaction to decrease the membrane thickness from 93 nm to 18 nm. The enhanced electronegativity can intensify the charge exclusion to divalent anions (Na</span><sub>2</sub>SO<sub>4</sub> rejection above 97%), while the ultrathin structure endows membrane with high water permeance of up to 39 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, about 2.4 times higher than that of pristine PA membrane. Our membranes provide a new path to rational design and controllable construction of high-performance nanofiltration membranes.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738822001983\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738822001983","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 17

摘要

多孔框架材料在调整聚酰胺膜的化学和物理结构以实现高效纳滤方面具有很大的前景。在本研究中,通过界面聚合将具有丰富磺酸基的阴离子共价有机骨架(aCOF)嵌入聚酰胺基质中,调节膜的电荷性质和厚度,以去除二价离子。由于aCOF具有较高的负电荷密度,使膜的电负性从- 25.6 mV提高到- 71.5 mV,并通过静电相互作用减缓哌嗪的扩散速度,使膜厚度从93 nm减小到18 nm。电负性的增强增强了膜对二价阴离子的电荷排斥(Na2SO4的截留率在97%以上),超薄结构使膜具有较高的水透性,最高可达39 L m−2 h−1 bar−1,约为原始PA膜的2.4倍。为高性能纳滤膜的合理设计和可控制备提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal

Porous framework materials hold great promise in tuning the chemical and physical structure of polyamide membranes for efficient nanofiltration. In this work, anionic covalent organic framework (aCOF) with abundant sulfonic acid groups was embedded into polyamide matrix via interfacial polymerization to modulate both membrane charge property and thickness for the removal of divalent ions. Benefiting from the high negative charged density, aCOF not only enhanced the membrane electronegativity from −25.6 mV to −71.5 mV but also slowed down the diffusion rate of piperazine by electrostatic interaction to decrease the membrane thickness from 93 nm to 18 nm. The enhanced electronegativity can intensify the charge exclusion to divalent anions (Na2SO4 rejection above 97%), while the ultrathin structure endows membrane with high water permeance of up to 39 L m−2 h−1 bar−1, about 2.4 times higher than that of pristine PA membrane. Our membranes provide a new path to rational design and controllable construction of high-performance nanofiltration membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Editorial Board “Network-trapped engineering” of graphene oxide membrane with stable structure Aryl-ether-free polyphenylene-based anion exchange membranes incorporating N-cyclic quaternary ammoniums for enhanced alkaline fuel cell performance Compromise mechanism of proton transfer in crown ether-based biomimetic proton exchange membranes: Insights from molecular dynamics simulations Pattern size relative to oil droplet size effect on oil fouling in nanofiltration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1