{"title":"在小鼠和大肠杆菌细胞中都能复制的质粒。","authors":"P J Kushner, B B Levinson, H M Goodman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cloned bovine papilloma virus (BPV) DNA induces cellular transformation when introduced into mouse cells growing in culture; the transferred viral DNA replicates as an extrachromosomal, closed circular element. BPV DNA is therefore an inviting replicon to construct a \"shuttle\" vector that can replicate in both mammalian cells and E. coli. Although BPV DNA devoid of bacterial plasmid sequences has been successfully employed to reintroduce cloned genes into rodent cells, construction of a true shuttle plasmid has been hampered by a disruptive influence of bacterial plasmid sequences that appear to block cellular transformation when included on the transferred molecule. We constructed a molecule, pGP, containing the transforming region of the BPV genome, the rat growth hormone gene, and bacterial plasmid pBR 327, and have found unexpectedly that the intact molecule can induce cellular transformation of mouse cells at high efficiency despite the presence of bacterial sequences in the transferred plasmid. A similar plasmid without the growth hormone segment does not transform mouse cells. The pGP molecule replicates as a stable plasmid in both mouse cells, where there are 30 to 80 monomer episomes per cell, and E. coli, and may be shuttled back and forth unaltered between the two kinds of cells. The growth hormone gene is transcribed in the mouse cells and gives rise to a transcript that is longer than authentic rat growth hormone mRNA and does not appear to be regulated by glucocorticoids. When pGP is cotransferred into mouse L-cells with herpes simplex virus tk gene, it appears to integrate, and free monomer episomes are not observed.</p>","PeriodicalId":77864,"journal":{"name":"Journal of molecular and applied genetics","volume":"1 6","pages":"527-38"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A plasmid that replicates in both mouse and E. coli cells.\",\"authors\":\"P J Kushner, B B Levinson, H M Goodman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cloned bovine papilloma virus (BPV) DNA induces cellular transformation when introduced into mouse cells growing in culture; the transferred viral DNA replicates as an extrachromosomal, closed circular element. BPV DNA is therefore an inviting replicon to construct a \\\"shuttle\\\" vector that can replicate in both mammalian cells and E. coli. Although BPV DNA devoid of bacterial plasmid sequences has been successfully employed to reintroduce cloned genes into rodent cells, construction of a true shuttle plasmid has been hampered by a disruptive influence of bacterial plasmid sequences that appear to block cellular transformation when included on the transferred molecule. We constructed a molecule, pGP, containing the transforming region of the BPV genome, the rat growth hormone gene, and bacterial plasmid pBR 327, and have found unexpectedly that the intact molecule can induce cellular transformation of mouse cells at high efficiency despite the presence of bacterial sequences in the transferred plasmid. A similar plasmid without the growth hormone segment does not transform mouse cells. The pGP molecule replicates as a stable plasmid in both mouse cells, where there are 30 to 80 monomer episomes per cell, and E. coli, and may be shuttled back and forth unaltered between the two kinds of cells. The growth hormone gene is transcribed in the mouse cells and gives rise to a transcript that is longer than authentic rat growth hormone mRNA and does not appear to be regulated by glucocorticoids. When pGP is cotransferred into mouse L-cells with herpes simplex virus tk gene, it appears to integrate, and free monomer episomes are not observed.</p>\",\"PeriodicalId\":77864,\"journal\":{\"name\":\"Journal of molecular and applied genetics\",\"volume\":\"1 6\",\"pages\":\"527-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and applied genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and applied genetics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A plasmid that replicates in both mouse and E. coli cells.
Cloned bovine papilloma virus (BPV) DNA induces cellular transformation when introduced into mouse cells growing in culture; the transferred viral DNA replicates as an extrachromosomal, closed circular element. BPV DNA is therefore an inviting replicon to construct a "shuttle" vector that can replicate in both mammalian cells and E. coli. Although BPV DNA devoid of bacterial plasmid sequences has been successfully employed to reintroduce cloned genes into rodent cells, construction of a true shuttle plasmid has been hampered by a disruptive influence of bacterial plasmid sequences that appear to block cellular transformation when included on the transferred molecule. We constructed a molecule, pGP, containing the transforming region of the BPV genome, the rat growth hormone gene, and bacterial plasmid pBR 327, and have found unexpectedly that the intact molecule can induce cellular transformation of mouse cells at high efficiency despite the presence of bacterial sequences in the transferred plasmid. A similar plasmid without the growth hormone segment does not transform mouse cells. The pGP molecule replicates as a stable plasmid in both mouse cells, where there are 30 to 80 monomer episomes per cell, and E. coli, and may be shuttled back and forth unaltered between the two kinds of cells. The growth hormone gene is transcribed in the mouse cells and gives rise to a transcript that is longer than authentic rat growth hormone mRNA and does not appear to be regulated by glucocorticoids. When pGP is cotransferred into mouse L-cells with herpes simplex virus tk gene, it appears to integrate, and free monomer episomes are not observed.