Tianqi He , Xiaoya Kang , Fujuan Wang , Junlei Zhang , Tianyun Zhang , Fen Ran
{"title":"电容贡献在促进高功率电池材料向快速充电的碱金属离子电池发展方面起着重要作用","authors":"Tianqi He , Xiaoya Kang , Fujuan Wang , Junlei Zhang , Tianyun Zhang , Fen Ran","doi":"10.1016/j.mser.2023.100737","DOIUrl":null,"url":null,"abstract":"<div><p>In the past few decades, electrochemical energy storage systems, represented by alkali metal<span> ion batteries and supercapacitors<span>, have developed rapidly against the background of sustainable development. However, supercapacitors and alkali metal ion batteries, known for the high power density and high energy density, respectively, have struggled to meet the demand of high both power and energy densities energy storage devices. Therefore, integrating both energy storage mechanisms of supercapacitors and alkali metal ion batteries in the same system to attain device with comparatively high both power and energy densities has become the preferred approach for most researchers, and the representatives are assembling hybrid ion capacitors or introducing capacitive contribution into alkali metal ion batteries materials for fast-charging alkali metal ion batteries. For the former, many good quality publications have summarized and evaluated it, while the latter has not. In this review, we systematically summarize and insightfully discuss the phenomenon of introducing capacitive contribution into electrode materials of alkali metal ion batteries. Different methods of identifying capacitive and diffusive behaviors are reviewed, and the origin of the capacitive contribution in the battery materials combining the charge storage mechanism are explained, the influences of electrode materials’ capacitive contribution on battery’s energy and power densities are discussed in detail. Finally, we propose a design idea of electrode materials for battery with high both power and energy densities based on accurately understanding the rational capacitive contribution.</span></span></p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"154 ","pages":"Article 100737"},"PeriodicalIF":31.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries\",\"authors\":\"Tianqi He , Xiaoya Kang , Fujuan Wang , Junlei Zhang , Tianyun Zhang , Fen Ran\",\"doi\":\"10.1016/j.mser.2023.100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past few decades, electrochemical energy storage systems, represented by alkali metal<span> ion batteries and supercapacitors<span>, have developed rapidly against the background of sustainable development. However, supercapacitors and alkali metal ion batteries, known for the high power density and high energy density, respectively, have struggled to meet the demand of high both power and energy densities energy storage devices. Therefore, integrating both energy storage mechanisms of supercapacitors and alkali metal ion batteries in the same system to attain device with comparatively high both power and energy densities has become the preferred approach for most researchers, and the representatives are assembling hybrid ion capacitors or introducing capacitive contribution into alkali metal ion batteries materials for fast-charging alkali metal ion batteries. For the former, many good quality publications have summarized and evaluated it, while the latter has not. In this review, we systematically summarize and insightfully discuss the phenomenon of introducing capacitive contribution into electrode materials of alkali metal ion batteries. Different methods of identifying capacitive and diffusive behaviors are reviewed, and the origin of the capacitive contribution in the battery materials combining the charge storage mechanism are explained, the influences of electrode materials’ capacitive contribution on battery’s energy and power densities are discussed in detail. Finally, we propose a design idea of electrode materials for battery with high both power and energy densities based on accurately understanding the rational capacitive contribution.</span></span></p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"154 \",\"pages\":\"Article 100737\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X23000232\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X23000232","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries
In the past few decades, electrochemical energy storage systems, represented by alkali metal ion batteries and supercapacitors, have developed rapidly against the background of sustainable development. However, supercapacitors and alkali metal ion batteries, known for the high power density and high energy density, respectively, have struggled to meet the demand of high both power and energy densities energy storage devices. Therefore, integrating both energy storage mechanisms of supercapacitors and alkali metal ion batteries in the same system to attain device with comparatively high both power and energy densities has become the preferred approach for most researchers, and the representatives are assembling hybrid ion capacitors or introducing capacitive contribution into alkali metal ion batteries materials for fast-charging alkali metal ion batteries. For the former, many good quality publications have summarized and evaluated it, while the latter has not. In this review, we systematically summarize and insightfully discuss the phenomenon of introducing capacitive contribution into electrode materials of alkali metal ion batteries. Different methods of identifying capacitive and diffusive behaviors are reviewed, and the origin of the capacitive contribution in the battery materials combining the charge storage mechanism are explained, the influences of electrode materials’ capacitive contribution on battery’s energy and power densities are discussed in detail. Finally, we propose a design idea of electrode materials for battery with high both power and energy densities based on accurately understanding the rational capacitive contribution.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.