铁弹性增韧:能否解决固体电解质的力学挑战?

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2023-04-01 DOI:10.1016/j.cossms.2023.101056
Anton Van der Ven , Robert M. McMeeking , Raphaële J. Clément , Krishna Garikipati
{"title":"铁弹性增韧:能否解决固体电解质的力学挑战?","authors":"Anton Van der Ven ,&nbsp;Robert M. McMeeking ,&nbsp;Raphaële J. Clément ,&nbsp;Krishna Garikipati","doi":"10.1016/j.cossms.2023.101056","DOIUrl":null,"url":null,"abstract":"<div><p>The most promising solid electrolytes for all-solid-state Li batteries are oxide and sulfide ceramics. Current ceramic solid electrolytes are brittle and lack the toughness to withstand the mechanical stresses of repeated charge and discharge cycles. Solid electrolytes are susceptible to crack propagation due to dendrite growth from Li metal anodes and to debonding processes at the cathode/electrolyte interface due to cyclic variations in the cathode lattice parameters. In this perspective, we argue that solutions to the mechanics challenges of all-solid-state batteries can be borrowed from the aerospace industry, which successfully overcame similar hurdles in the development of thermal barrier coatings of superalloy turbine blades. Their solution was to exploit ferroelastic and transformation toughening mechanisms to develop ceramics that can withstand cyclic stresses due to large variations in temperature. This perspective describes fundamental materials design principles with which to search for solid electrolytes that are ferroelastically toughened.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ferroelastic toughening: Can it solve the mechanics challenges of solid electrolytes?\",\"authors\":\"Anton Van der Ven ,&nbsp;Robert M. McMeeking ,&nbsp;Raphaële J. Clément ,&nbsp;Krishna Garikipati\",\"doi\":\"10.1016/j.cossms.2023.101056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The most promising solid electrolytes for all-solid-state Li batteries are oxide and sulfide ceramics. Current ceramic solid electrolytes are brittle and lack the toughness to withstand the mechanical stresses of repeated charge and discharge cycles. Solid electrolytes are susceptible to crack propagation due to dendrite growth from Li metal anodes and to debonding processes at the cathode/electrolyte interface due to cyclic variations in the cathode lattice parameters. In this perspective, we argue that solutions to the mechanics challenges of all-solid-state batteries can be borrowed from the aerospace industry, which successfully overcame similar hurdles in the development of thermal barrier coatings of superalloy turbine blades. Their solution was to exploit ferroelastic and transformation toughening mechanisms to develop ceramics that can withstand cyclic stresses due to large variations in temperature. This perspective describes fundamental materials design principles with which to search for solid electrolytes that are ferroelastically toughened.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028623000013\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

全固态锂电池最有前途的固体电解质是氧化物和硫化物陶瓷。目前的陶瓷固体电解质易碎,缺乏韧性,无法承受反复充放电循环的机械应力。由于锂金属阳极的枝晶生长,固体电解质容易受到裂纹扩展的影响;由于阴极晶格参数的循环变化,固体电解质容易受到阴极/电解质界面脱粘过程的影响。从这个角度来看,我们认为全固态电池的力学挑战的解决方案可以借鉴航空航天工业,该工业成功地克服了高温合金涡轮叶片热障涂层开发中的类似障碍。他们的解决方案是利用铁弹性和转变增韧机制来开发陶瓷,这种陶瓷可以承受由于温度的巨大变化而产生的循环应力。这一观点描述了寻找铁弹性增韧固体电解质的基本材料设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferroelastic toughening: Can it solve the mechanics challenges of solid electrolytes?

The most promising solid electrolytes for all-solid-state Li batteries are oxide and sulfide ceramics. Current ceramic solid electrolytes are brittle and lack the toughness to withstand the mechanical stresses of repeated charge and discharge cycles. Solid electrolytes are susceptible to crack propagation due to dendrite growth from Li metal anodes and to debonding processes at the cathode/electrolyte interface due to cyclic variations in the cathode lattice parameters. In this perspective, we argue that solutions to the mechanics challenges of all-solid-state batteries can be borrowed from the aerospace industry, which successfully overcame similar hurdles in the development of thermal barrier coatings of superalloy turbine blades. Their solution was to exploit ferroelastic and transformation toughening mechanisms to develop ceramics that can withstand cyclic stresses due to large variations in temperature. This perspective describes fundamental materials design principles with which to search for solid electrolytes that are ferroelastically toughened.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
Deformation-induced martensitic transformations: A strategy for overcoming the strength-ductility trade-off in high-entropy alloys Toward high-quality graphene film growth by chemical vapor deposition system Graphene- polymer nanocomposite-based wearable strain sensors for physiological signal Monitoring: Recent progress and challenges Spintronic devices as next-generation computation accelerators Recent progress in elastic and inelastic neutron scattering for chemical, polymeric, and biological investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1