大鼠部分肝切除术后摄食依赖型和独立型肝细胞群DNA合成动力学。

Cell and tissue kinetics Pub Date : 1983-07-01
M Kallenbach, N O Roome, R Schulte-Hermann
{"title":"大鼠部分肝切除术后摄食依赖型和独立型肝细胞群DNA合成动力学。","authors":"M Kallenbach,&nbsp;N O Roome,&nbsp;R Schulte-Hermann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of food consumption on the kinetics of hepatic DNA synthesis after partial hepatectomy (PH) have been studied in rats. Short-term (4-24 hr) fasting before or after PH resulted in depression and/or delay of DNA synthesis on days 1, 2 and 3 of regeneration. This depression was found in hepatocytes and, to a lesser extent, in littoral cells. Re-feeding resulted in an increase of DNA synthesis within 3-8 hr. The results suggest that two different hepatocyte subpopulations exist in regenerating rat liver: one which proceeds to DNA synthesis without apparent exogenous signals, and another one which needs, in addition to the specific mitogenic action of PH, food intake as a secondary permissive signal in order to initiate DNA synthesis. In the latter population food consumption appears to be required at two different stages: (1) in G0 or the early pre-replicative phase (PRP); (2) in the late PRP 3-8 hr before initiation of DNA synthesis. In the latter stage dietary protein is needed, but no so in the former. The dependence on feeding in the late PRP increases relatively with time after PH. No evidence was found to suggest a different distribution of the two cell populations throughout the liver acinus. The findings support the hypothesis that the known effects of the light-dark rhythm on the timing of DNA synthesis after PH are mediated by the natural feeding rhythm of rats fed ad libitum. In addition they offer a means for improving the synchrony of hepatocyte proliferation in regenerating rat liver.</p>","PeriodicalId":75682,"journal":{"name":"Cell and tissue kinetics","volume":"16 4","pages":"321-32"},"PeriodicalIF":0.0000,"publicationDate":"1983-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of DNA synthesis in feeding-dependent and independent hepatocyte populations of rats after partial hepatectomy.\",\"authors\":\"M Kallenbach,&nbsp;N O Roome,&nbsp;R Schulte-Hermann\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of food consumption on the kinetics of hepatic DNA synthesis after partial hepatectomy (PH) have been studied in rats. Short-term (4-24 hr) fasting before or after PH resulted in depression and/or delay of DNA synthesis on days 1, 2 and 3 of regeneration. This depression was found in hepatocytes and, to a lesser extent, in littoral cells. Re-feeding resulted in an increase of DNA synthesis within 3-8 hr. The results suggest that two different hepatocyte subpopulations exist in regenerating rat liver: one which proceeds to DNA synthesis without apparent exogenous signals, and another one which needs, in addition to the specific mitogenic action of PH, food intake as a secondary permissive signal in order to initiate DNA synthesis. In the latter population food consumption appears to be required at two different stages: (1) in G0 or the early pre-replicative phase (PRP); (2) in the late PRP 3-8 hr before initiation of DNA synthesis. In the latter stage dietary protein is needed, but no so in the former. The dependence on feeding in the late PRP increases relatively with time after PH. No evidence was found to suggest a different distribution of the two cell populations throughout the liver acinus. The findings support the hypothesis that the known effects of the light-dark rhythm on the timing of DNA synthesis after PH are mediated by the natural feeding rhythm of rats fed ad libitum. In addition they offer a means for improving the synchrony of hepatocyte proliferation in regenerating rat liver.</p>\",\"PeriodicalId\":75682,\"journal\":{\"name\":\"Cell and tissue kinetics\",\"volume\":\"16 4\",\"pages\":\"321-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and tissue kinetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and tissue kinetics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大鼠肝部分切除(PH)后,研究了食物消耗对肝脏DNA合成动力学的影响。PH之前或之后的短期禁食(4-24小时)导致再生第1、2和3天DNA合成的抑制和/或延迟。这种抑制在肝细胞中发现,在较小程度上,在滨海细胞中也发现。在3-8小时内,重新喂食导致DNA合成增加。结果表明,再生大鼠肝脏中存在两种不同的肝细胞亚群:一种是在没有明显外源信号的情况下进行DNA合成,另一种是除了PH的特定有丝分裂作用外,还需要食物摄入作为次级允许信号来启动DNA合成。在后一种群中,似乎需要在两个不同的阶段进行食物消耗:(1)在G0或早期繁殖前阶段(PRP);(2)在DNA合成开始前3-8小时的PRP后期。后期需要饲粮蛋白质,而前期则不需要。PRP后期对摄食的依赖性随着ph后时间的增加而增加。没有证据表明两种细胞群在肝腺泡中的分布不同。这些发现支持了一种假设,即已知的光照-黑暗节律对PH后DNA合成时间的影响是由自由喂养的大鼠的自然摄食节律介导的。此外,它们还为改善再生大鼠肝脏中肝细胞增殖的同步性提供了一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetics of DNA synthesis in feeding-dependent and independent hepatocyte populations of rats after partial hepatectomy.

The effects of food consumption on the kinetics of hepatic DNA synthesis after partial hepatectomy (PH) have been studied in rats. Short-term (4-24 hr) fasting before or after PH resulted in depression and/or delay of DNA synthesis on days 1, 2 and 3 of regeneration. This depression was found in hepatocytes and, to a lesser extent, in littoral cells. Re-feeding resulted in an increase of DNA synthesis within 3-8 hr. The results suggest that two different hepatocyte subpopulations exist in regenerating rat liver: one which proceeds to DNA synthesis without apparent exogenous signals, and another one which needs, in addition to the specific mitogenic action of PH, food intake as a secondary permissive signal in order to initiate DNA synthesis. In the latter population food consumption appears to be required at two different stages: (1) in G0 or the early pre-replicative phase (PRP); (2) in the late PRP 3-8 hr before initiation of DNA synthesis. In the latter stage dietary protein is needed, but no so in the former. The dependence on feeding in the late PRP increases relatively with time after PH. No evidence was found to suggest a different distribution of the two cell populations throughout the liver acinus. The findings support the hypothesis that the known effects of the light-dark rhythm on the timing of DNA synthesis after PH are mediated by the natural feeding rhythm of rats fed ad libitum. In addition they offer a means for improving the synchrony of hepatocyte proliferation in regenerating rat liver.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of the joint meeting of the Cell Kinetics Society and the International Cell Cycle Society. 28-31 March 1990, St Louis, Missouri, U.S.A. Abstracts of the 16th meeting of the European Study Group for Cell Proliferation. 3-6 May 1989, Milan. Proceedings of the Cell Kinetics Society, thirteenth annual meeting. 29 March-1 April 1989, White Plains, New York, U.S.A. Bone marrow fibroblast colony-forming cells are osteogenic stem cells. Epidermal tissue homeostasis. III. Effect of hydrocortisone on cell pool size, cell birth rate and cell loss in normal toads and in toads deprived of the pars distalis of the pituitary gland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1