{"title":"正常骨髓造血脾脏集落形成细胞富集群体再生动力学的体内研究。","authors":"J W Visser, J F Eliason","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.</p>","PeriodicalId":75682,"journal":{"name":"Cell and tissue kinetics","volume":"16 4","pages":"385-92"},"PeriodicalIF":0.0000,"publicationDate":"1983-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo studies on the regeneration kinetics of enriched populations of haemopoietic spleen colony-forming cells from normal bone marrow.\",\"authors\":\"J W Visser, J F Eliason\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.</p>\",\"PeriodicalId\":75682,\"journal\":{\"name\":\"Cell and tissue kinetics\",\"volume\":\"16 4\",\"pages\":\"385-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and tissue kinetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and tissue kinetics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vivo studies on the regeneration kinetics of enriched populations of haemopoietic spleen colony-forming cells from normal bone marrow.
Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.