{"title":"锂金属电池含合金锂阳极研究进展","authors":"Mengqi Zhu, Xufeng Zhao, Rongzhi Yan, Jindan Zhang","doi":"10.1016/j.cossms.2023.101079","DOIUrl":null,"url":null,"abstract":"<div><p><span>Lithium metal is regarded as one of the most ideal anode materials for next-generation batteries, due to its high theoretical capacity of 3860 mAh g</span><sup>−1</sup><span><span> and low redox potential (−3.04 V vs standard hydrogen electrode). However, practical applications of lithium anodes are impeded by the uncontrollable growth of lithium dendrite and continuous reactions between lithium and electrolyte during cycling processes. According to reports for decades, artificial </span>solid electrolyte<span><span> interface (SEI), electrolyte additives, and construction of three-dimensional (3D) structures are demonstrated essential strategies. Among numerous approaches, metals that can alloy with lithium have been employed to homogenize lithium deposition and accelerate </span>Li ion transportation, which attract more and more attention. This review aims to summarize the lithium alloying applied in lithium anodes including the fabricating approaches of alloy-containing lithium anodes, and the action mechanism and challenges of fabricated lithium anodes. Based on summarizing the literature, shortcomings and challenges as well as the prospects are also analyzed, to impel further research of lithium anodes and lithium-based batteries.</span></span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 3","pages":"Article 101079"},"PeriodicalIF":12.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recent research progress of alloy-containing lithium anodes in lithium-metal batteries\",\"authors\":\"Mengqi Zhu, Xufeng Zhao, Rongzhi Yan, Jindan Zhang\",\"doi\":\"10.1016/j.cossms.2023.101079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Lithium metal is regarded as one of the most ideal anode materials for next-generation batteries, due to its high theoretical capacity of 3860 mAh g</span><sup>−1</sup><span><span> and low redox potential (−3.04 V vs standard hydrogen electrode). However, practical applications of lithium anodes are impeded by the uncontrollable growth of lithium dendrite and continuous reactions between lithium and electrolyte during cycling processes. According to reports for decades, artificial </span>solid electrolyte<span><span> interface (SEI), electrolyte additives, and construction of three-dimensional (3D) structures are demonstrated essential strategies. Among numerous approaches, metals that can alloy with lithium have been employed to homogenize lithium deposition and accelerate </span>Li ion transportation, which attract more and more attention. This review aims to summarize the lithium alloying applied in lithium anodes including the fabricating approaches of alloy-containing lithium anodes, and the action mechanism and challenges of fabricated lithium anodes. Based on summarizing the literature, shortcomings and challenges as well as the prospects are also analyzed, to impel further research of lithium anodes and lithium-based batteries.</span></span></p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"27 3\",\"pages\":\"Article 101079\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028623000244\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000244","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
摘要
金属锂具有3860 mAh g - 1的高理论容量和低氧化还原电位(与标准氢电极相比为- 3.04 V),被认为是下一代电池最理想的负极材料之一。然而,锂枝晶的不可控生长和循环过程中锂与电解质的持续反应阻碍了锂阳极的实际应用。根据几十年来的报道,人工固体电解质界面(SEI),电解质添加剂和三维结构的构建是证明的基本策略。在众多的方法中,可以与锂合金的金属被用于均匀锂沉积和加速锂离子的输运,越来越受到人们的关注。本文综述了锂合金在锂阳极中的应用,包括含合金锂阳极的制备方法,以及制备锂阳极的作用机理和面临的挑战。在总结文献的基础上,分析了锂阳极和锂基电池的不足和挑战,并展望了未来的发展前景,以推动锂阳极和锂基电池的进一步研究。
Recent research progress of alloy-containing lithium anodes in lithium-metal batteries
Lithium metal is regarded as one of the most ideal anode materials for next-generation batteries, due to its high theoretical capacity of 3860 mAh g−1 and low redox potential (−3.04 V vs standard hydrogen electrode). However, practical applications of lithium anodes are impeded by the uncontrollable growth of lithium dendrite and continuous reactions between lithium and electrolyte during cycling processes. According to reports for decades, artificial solid electrolyte interface (SEI), electrolyte additives, and construction of three-dimensional (3D) structures are demonstrated essential strategies. Among numerous approaches, metals that can alloy with lithium have been employed to homogenize lithium deposition and accelerate Li ion transportation, which attract more and more attention. This review aims to summarize the lithium alloying applied in lithium anodes including the fabricating approaches of alloy-containing lithium anodes, and the action mechanism and challenges of fabricated lithium anodes. Based on summarizing the literature, shortcomings and challenges as well as the prospects are also analyzed, to impel further research of lithium anodes and lithium-based batteries.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field