{"title":"从堵塞固体到机械超材料:简要回顾","authors":"Junchao Huang, Jianhua Zhang, Ding Xu, Shiyun Zhang, Hua Tong, Ning Xu","doi":"10.1016/j.cossms.2022.101053","DOIUrl":null,"url":null,"abstract":"<div><p>Here we review recent studies of mechanical metamaterials originating from or closely related to marginally jammed solids. Unlike previous approaches mainly focusing on the design of building blocks to form periodic metamaterials, the design and realization of such metamaterials exploit two special aspects of jammed solids, disorder and isostaticity. Due to the disorder, every single bond of jammed solids is unique. Such a bond uniqueness facilitates the flexible adjustment of the global and local elastic responses of unstressed spring networks derived from jammed solids, leading to auxetic materials with negative Poisson’s ratio and bionic metamaterials to realize allostery and flow controls. The disorder also causes plastic instabilities of jammed solids under load. The jammed networks are thus inherently metamaterials exhibiting multi-functions such as auxeticity, negative compressibility, and energy absorption. Taking advantage of isostaticity, topological mechanical metamaterials analogous to electronic materials such as topological insulators have also been realized, while jammed networks inherently occupy such topological features. The presence of disorder greatly challenges our understanding of jammed solids, but it also provides us with more freedoms and opportunities to design mechanical metamaterials.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 1","pages":"Article 101053"},"PeriodicalIF":12.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"From jammed solids to mechanical metamaterials : A brief review\",\"authors\":\"Junchao Huang, Jianhua Zhang, Ding Xu, Shiyun Zhang, Hua Tong, Ning Xu\",\"doi\":\"10.1016/j.cossms.2022.101053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here we review recent studies of mechanical metamaterials originating from or closely related to marginally jammed solids. Unlike previous approaches mainly focusing on the design of building blocks to form periodic metamaterials, the design and realization of such metamaterials exploit two special aspects of jammed solids, disorder and isostaticity. Due to the disorder, every single bond of jammed solids is unique. Such a bond uniqueness facilitates the flexible adjustment of the global and local elastic responses of unstressed spring networks derived from jammed solids, leading to auxetic materials with negative Poisson’s ratio and bionic metamaterials to realize allostery and flow controls. The disorder also causes plastic instabilities of jammed solids under load. The jammed networks are thus inherently metamaterials exhibiting multi-functions such as auxeticity, negative compressibility, and energy absorption. Taking advantage of isostaticity, topological mechanical metamaterials analogous to electronic materials such as topological insulators have also been realized, while jammed networks inherently occupy such topological features. The presence of disorder greatly challenges our understanding of jammed solids, but it also provides us with more freedoms and opportunities to design mechanical metamaterials.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"27 1\",\"pages\":\"Article 101053\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000730\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000730","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
From jammed solids to mechanical metamaterials : A brief review
Here we review recent studies of mechanical metamaterials originating from or closely related to marginally jammed solids. Unlike previous approaches mainly focusing on the design of building blocks to form periodic metamaterials, the design and realization of such metamaterials exploit two special aspects of jammed solids, disorder and isostaticity. Due to the disorder, every single bond of jammed solids is unique. Such a bond uniqueness facilitates the flexible adjustment of the global and local elastic responses of unstressed spring networks derived from jammed solids, leading to auxetic materials with negative Poisson’s ratio and bionic metamaterials to realize allostery and flow controls. The disorder also causes plastic instabilities of jammed solids under load. The jammed networks are thus inherently metamaterials exhibiting multi-functions such as auxeticity, negative compressibility, and energy absorption. Taking advantage of isostaticity, topological mechanical metamaterials analogous to electronic materials such as topological insulators have also been realized, while jammed networks inherently occupy such topological features. The presence of disorder greatly challenges our understanding of jammed solids, but it also provides us with more freedoms and opportunities to design mechanical metamaterials.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field