Izabela Wysocka , Natalia Czaplicka , Ewelina Pawelczyk , Jakub Karczewski , Joanna Sobczak , Zuzanna Bielan , Michał Maciejewski , Barbara Kościelska , Andrzej Rogala
{"title":"用于碳氢化合物干重整的新型糖基碳化镍钨催化剂","authors":"Izabela Wysocka , Natalia Czaplicka , Ewelina Pawelczyk , Jakub Karczewski , Joanna Sobczak , Zuzanna Bielan , Michał Maciejewski , Barbara Kościelska , Andrzej Rogala","doi":"10.1016/j.jiec.2023.04.038","DOIUrl":null,"url":null,"abstract":"<div><p><span>The search for new materials for dry reforming of hydrocarbons with high activity, stability, and ease of synthesis is still one of the main directions of research in the field of heterogeneous catalysis. Traditional methods of carbide synthesis require the use of combustible gases of petrochemical origin. The search for new catalysts based on renewable and safe carbon sources is highly demanded. Therefore, we report WC and Ni-WC catalysts prepared using glucose, sucrose, fructose and trehalose. The materials were characterized using XRD, AAS, H</span><sub>2</sub>-TPR, SEM, TEM, Raman spectroscopy, FTIR, CO<sub>2</sub><span>-TPD, TG/DTG BET and BJH methods. The catalytic activity was investigated in the dry reforming of methane and plastics. The sugar type used for the preparation determined crystal structure and therefore catalytic properties of Ni-WC catalysts. The most active and stable catalyst was prepared using sucrose. It was observed that catalysts obtained with the use of sugars containing fructose in their structure are characterized by smaller WC and Ni crystallites, which have a direct impact on high catalytic activity. The catalytic activity of the most active catalyst Ni-WC_S was examined in the dry reforming of plastics.The highest syngas generation was observed for low-density polyethylene reforming reaching 75.58 mmol/g plastic.</span></p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 431-446"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel sugar-based nickel-tungsten carbide catalysts for dry reforming of hydrocarbons\",\"authors\":\"Izabela Wysocka , Natalia Czaplicka , Ewelina Pawelczyk , Jakub Karczewski , Joanna Sobczak , Zuzanna Bielan , Michał Maciejewski , Barbara Kościelska , Andrzej Rogala\",\"doi\":\"10.1016/j.jiec.2023.04.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The search for new materials for dry reforming of hydrocarbons with high activity, stability, and ease of synthesis is still one of the main directions of research in the field of heterogeneous catalysis. Traditional methods of carbide synthesis require the use of combustible gases of petrochemical origin. The search for new catalysts based on renewable and safe carbon sources is highly demanded. Therefore, we report WC and Ni-WC catalysts prepared using glucose, sucrose, fructose and trehalose. The materials were characterized using XRD, AAS, H</span><sub>2</sub>-TPR, SEM, TEM, Raman spectroscopy, FTIR, CO<sub>2</sub><span>-TPD, TG/DTG BET and BJH methods. The catalytic activity was investigated in the dry reforming of methane and plastics. The sugar type used for the preparation determined crystal structure and therefore catalytic properties of Ni-WC catalysts. The most active and stable catalyst was prepared using sucrose. It was observed that catalysts obtained with the use of sugars containing fructose in their structure are characterized by smaller WC and Ni crystallites, which have a direct impact on high catalytic activity. The catalytic activity of the most active catalyst Ni-WC_S was examined in the dry reforming of plastics.The highest syngas generation was observed for low-density polyethylene reforming reaching 75.58 mmol/g plastic.</span></p></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"124 \",\"pages\":\"Pages 431-446\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X23002666\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X23002666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel sugar-based nickel-tungsten carbide catalysts for dry reforming of hydrocarbons
The search for new materials for dry reforming of hydrocarbons with high activity, stability, and ease of synthesis is still one of the main directions of research in the field of heterogeneous catalysis. Traditional methods of carbide synthesis require the use of combustible gases of petrochemical origin. The search for new catalysts based on renewable and safe carbon sources is highly demanded. Therefore, we report WC and Ni-WC catalysts prepared using glucose, sucrose, fructose and trehalose. The materials were characterized using XRD, AAS, H2-TPR, SEM, TEM, Raman spectroscopy, FTIR, CO2-TPD, TG/DTG BET and BJH methods. The catalytic activity was investigated in the dry reforming of methane and plastics. The sugar type used for the preparation determined crystal structure and therefore catalytic properties of Ni-WC catalysts. The most active and stable catalyst was prepared using sucrose. It was observed that catalysts obtained with the use of sugars containing fructose in their structure are characterized by smaller WC and Ni crystallites, which have a direct impact on high catalytic activity. The catalytic activity of the most active catalyst Ni-WC_S was examined in the dry reforming of plastics.The highest syngas generation was observed for low-density polyethylene reforming reaching 75.58 mmol/g plastic.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.