Qiyi An , Qingsong Zhang , Xianghui Li , Hao Yu , Xiao Zhang
{"title":"不同温度压力下SC-CO2静态与动态蚀变对岩石孔隙演化的影响对比研究","authors":"Qiyi An , Qingsong Zhang , Xianghui Li , Hao Yu , Xiao Zhang","doi":"10.1016/j.jngse.2022.104780","DOIUrl":null,"url":null,"abstract":"<div><p><span>The efficient exploitation of geological resources using supercritical carbon dioxide (SC–CO</span><sub>2</sub>) is seriously hindered by the inaccurate mastery of pore evolution laws of reservoir rocks. It is thus aimed to elucidate the temperature and pressure effects of SC-CO<sub>2</sub><span> on the rock pore evolution in this study. Static and dynamic alteration tests were performed under 9 conditions of different temperature and pressure. The porosity evolution shows consistently positive correlation with the pressure of SC-CO</span><sub>2</sub><span>, while inconsistent correlation with temperature. The inconsistent temperature effect is caused by the weakened alteration process of calcite with temperature increasing, which is opposite to the enhanced alteration process of other minerals. The fundamental reason is that the alteration rate of mineral with low activation energy E</span><sub>a</sub> is significantly reduced by temperature increase. With the increase of E<sub>a</sub>, however, the reducing effect of temperature increase on alteration rate gradually becomes weaker and hardly turns into an enhancing effect until E<sub>a</sub><span> = 26,000 J/mol. With the help of resistance kinetics equation, two kinds of calculation methods of porosity evolution were proposed based on rock alteration volume and soluble mineral alteration extent, respectively. In addition, considering dynamic alteration effect, the rock pore evolution process is weakened because of the weakened alteration process of soluble minerals, and the differential porosity evolution of sandstone, granite and marble can respectively reach 0.95%, 0.11% and 0.15% at most.</span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"107 ","pages":"Article 104780"},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Static and dynamic alteration effect of SC-CO2 on rock pore evolution under different temperature and pressure: A comparative study\",\"authors\":\"Qiyi An , Qingsong Zhang , Xianghui Li , Hao Yu , Xiao Zhang\",\"doi\":\"10.1016/j.jngse.2022.104780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The efficient exploitation of geological resources using supercritical carbon dioxide (SC–CO</span><sub>2</sub>) is seriously hindered by the inaccurate mastery of pore evolution laws of reservoir rocks. It is thus aimed to elucidate the temperature and pressure effects of SC-CO<sub>2</sub><span> on the rock pore evolution in this study. Static and dynamic alteration tests were performed under 9 conditions of different temperature and pressure. The porosity evolution shows consistently positive correlation with the pressure of SC-CO</span><sub>2</sub><span>, while inconsistent correlation with temperature. The inconsistent temperature effect is caused by the weakened alteration process of calcite with temperature increasing, which is opposite to the enhanced alteration process of other minerals. The fundamental reason is that the alteration rate of mineral with low activation energy E</span><sub>a</sub> is significantly reduced by temperature increase. With the increase of E<sub>a</sub>, however, the reducing effect of temperature increase on alteration rate gradually becomes weaker and hardly turns into an enhancing effect until E<sub>a</sub><span> = 26,000 J/mol. With the help of resistance kinetics equation, two kinds of calculation methods of porosity evolution were proposed based on rock alteration volume and soluble mineral alteration extent, respectively. In addition, considering dynamic alteration effect, the rock pore evolution process is weakened because of the weakened alteration process of soluble minerals, and the differential porosity evolution of sandstone, granite and marble can respectively reach 0.95%, 0.11% and 0.15% at most.</span></p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"107 \",\"pages\":\"Article 104780\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003663\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003663","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Static and dynamic alteration effect of SC-CO2 on rock pore evolution under different temperature and pressure: A comparative study
The efficient exploitation of geological resources using supercritical carbon dioxide (SC–CO2) is seriously hindered by the inaccurate mastery of pore evolution laws of reservoir rocks. It is thus aimed to elucidate the temperature and pressure effects of SC-CO2 on the rock pore evolution in this study. Static and dynamic alteration tests were performed under 9 conditions of different temperature and pressure. The porosity evolution shows consistently positive correlation with the pressure of SC-CO2, while inconsistent correlation with temperature. The inconsistent temperature effect is caused by the weakened alteration process of calcite with temperature increasing, which is opposite to the enhanced alteration process of other minerals. The fundamental reason is that the alteration rate of mineral with low activation energy Ea is significantly reduced by temperature increase. With the increase of Ea, however, the reducing effect of temperature increase on alteration rate gradually becomes weaker and hardly turns into an enhancing effect until Ea = 26,000 J/mol. With the help of resistance kinetics equation, two kinds of calculation methods of porosity evolution were proposed based on rock alteration volume and soluble mineral alteration extent, respectively. In addition, considering dynamic alteration effect, the rock pore evolution process is weakened because of the weakened alteration process of soluble minerals, and the differential porosity evolution of sandstone, granite and marble can respectively reach 0.95%, 0.11% and 0.15% at most.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.