{"title":"离子载体和代谢抑制剂对兔网织红细胞蛋白质合成的影响","authors":"Haim Breitbart","doi":"10.1016/0005-2787(81)90082-4","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of some ionophores and metabolic inhibitors on reticulocytes protein synthesis was examined. At μM concentrations, valinomycin, nigericin and CCCP rapidly inhibit protein synthesis, while with antimycin-A or DCCD the inhibition is rather slow. The onset of the arrest of protein synthesis coincides with a 20–30% drop in the intracellular ATP content. No inhibition in protein synthesis or drop in ATP was found after 1 h incubation without glucose or in the presence of 2-deoxyglucose. It is shown that the inhibition by valinomycin, nigericin or CCCP is not due to their effect on K<sup>+</sup> and/or H<sup>+</sup> fluxes through the plasma membrane. Reticulocytes incubated at pH 8.2 show much lower inhibition of protein synthesis by nigericin, CCCP, DCCD or antimycin-A. On the other hand, at this alkaline pH, starvation to glucose causes high inhibition of protein synthesis. It is concluded that the ionophores inhibit protein synthesis due to their uncoupling effect on mitochondrial ATP synthesis. At high pH, the glycolytic activity is relatively high, and the ATP generated by the glycolysis can compensate to some degree for the ATP loss in the oxidative phosphorylation.</p></div>","PeriodicalId":100164,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis","volume":"656 2","pages":"Pages 160-166"},"PeriodicalIF":0.0000,"publicationDate":"1981-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2787(81)90082-4","citationCount":"8","resultStr":"{\"title\":\"Effects of ionophores and metabolic inhibitors on protein synthesis in rabbit reticulocytes\",\"authors\":\"Haim Breitbart\",\"doi\":\"10.1016/0005-2787(81)90082-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of some ionophores and metabolic inhibitors on reticulocytes protein synthesis was examined. At μM concentrations, valinomycin, nigericin and CCCP rapidly inhibit protein synthesis, while with antimycin-A or DCCD the inhibition is rather slow. The onset of the arrest of protein synthesis coincides with a 20–30% drop in the intracellular ATP content. No inhibition in protein synthesis or drop in ATP was found after 1 h incubation without glucose or in the presence of 2-deoxyglucose. It is shown that the inhibition by valinomycin, nigericin or CCCP is not due to their effect on K<sup>+</sup> and/or H<sup>+</sup> fluxes through the plasma membrane. Reticulocytes incubated at pH 8.2 show much lower inhibition of protein synthesis by nigericin, CCCP, DCCD or antimycin-A. On the other hand, at this alkaline pH, starvation to glucose causes high inhibition of protein synthesis. It is concluded that the ionophores inhibit protein synthesis due to their uncoupling effect on mitochondrial ATP synthesis. At high pH, the glycolytic activity is relatively high, and the ATP generated by the glycolysis can compensate to some degree for the ATP loss in the oxidative phosphorylation.</p></div>\",\"PeriodicalId\":100164,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis\",\"volume\":\"656 2\",\"pages\":\"Pages 160-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0005-2787(81)90082-4\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0005278781900824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0005278781900824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of ionophores and metabolic inhibitors on protein synthesis in rabbit reticulocytes
The effect of some ionophores and metabolic inhibitors on reticulocytes protein synthesis was examined. At μM concentrations, valinomycin, nigericin and CCCP rapidly inhibit protein synthesis, while with antimycin-A or DCCD the inhibition is rather slow. The onset of the arrest of protein synthesis coincides with a 20–30% drop in the intracellular ATP content. No inhibition in protein synthesis or drop in ATP was found after 1 h incubation without glucose or in the presence of 2-deoxyglucose. It is shown that the inhibition by valinomycin, nigericin or CCCP is not due to their effect on K+ and/or H+ fluxes through the plasma membrane. Reticulocytes incubated at pH 8.2 show much lower inhibition of protein synthesis by nigericin, CCCP, DCCD or antimycin-A. On the other hand, at this alkaline pH, starvation to glucose causes high inhibition of protein synthesis. It is concluded that the ionophores inhibit protein synthesis due to their uncoupling effect on mitochondrial ATP synthesis. At high pH, the glycolytic activity is relatively high, and the ATP generated by the glycolysis can compensate to some degree for the ATP loss in the oxidative phosphorylation.