K Sawamura, A Fujita, R Yokoyama, T Taira, Y H Inoue, H S Park, M T Yamamoto
{"title":"黑腹果蝇生殖隔离基因合子杂交拯救的分子和遗传解剖。","authors":"K Sawamura, A Fujita, R Yokoyama, T Taira, Y H Inoue, H S Park, M T Yamamoto","doi":"10.1266/jjg.70.223","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrids from the cross between males of Drosophila melanogaster and females of its sibling species (D. simulans, D. mauritiana, or D. sechellia) are embryonic lethal when they carry the wild type allele of zygotic hybrid rescue (zhr) from D. melanogaster. The zhr gene has been mapped in the proximal region of the X heterochromatin slightly distal to the proximal breakpoint of In(1)sc8, the region rich in 1.688 g/cm3 satellite DNA. Since this satellite DNA does not exist in the sibling species, the satellite DNA was considered to be involved in the hybrid lethality. We examined the hypothesis molecular cytogenetically. The results are (1) three Df(1)zhr chromosomes carried this satellite DNA, and (2) hybrids were viable even if the amount of the satellite DNA in hybrids was increased by adding minichromosomes Dp(1;f)1205 and Dp(1;f)1187 into the genome. These results do not support the above hypothesis.</p>","PeriodicalId":13120,"journal":{"name":"Idengaku zasshi","volume":"70 2","pages":"223-32"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1266/jjg.70.223","citationCount":"18","resultStr":"{\"title\":\"Molecular and genetic dissection of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster.\",\"authors\":\"K Sawamura, A Fujita, R Yokoyama, T Taira, Y H Inoue, H S Park, M T Yamamoto\",\"doi\":\"10.1266/jjg.70.223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybrids from the cross between males of Drosophila melanogaster and females of its sibling species (D. simulans, D. mauritiana, or D. sechellia) are embryonic lethal when they carry the wild type allele of zygotic hybrid rescue (zhr) from D. melanogaster. The zhr gene has been mapped in the proximal region of the X heterochromatin slightly distal to the proximal breakpoint of In(1)sc8, the region rich in 1.688 g/cm3 satellite DNA. Since this satellite DNA does not exist in the sibling species, the satellite DNA was considered to be involved in the hybrid lethality. We examined the hypothesis molecular cytogenetically. The results are (1) three Df(1)zhr chromosomes carried this satellite DNA, and (2) hybrids were viable even if the amount of the satellite DNA in hybrids was increased by adding minichromosomes Dp(1;f)1205 and Dp(1;f)1187 into the genome. These results do not support the above hypothesis.</p>\",\"PeriodicalId\":13120,\"journal\":{\"name\":\"Idengaku zasshi\",\"volume\":\"70 2\",\"pages\":\"223-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1266/jjg.70.223\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Idengaku zasshi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1266/jjg.70.223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Idengaku zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1266/jjg.70.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular and genetic dissection of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster.
Hybrids from the cross between males of Drosophila melanogaster and females of its sibling species (D. simulans, D. mauritiana, or D. sechellia) are embryonic lethal when they carry the wild type allele of zygotic hybrid rescue (zhr) from D. melanogaster. The zhr gene has been mapped in the proximal region of the X heterochromatin slightly distal to the proximal breakpoint of In(1)sc8, the region rich in 1.688 g/cm3 satellite DNA. Since this satellite DNA does not exist in the sibling species, the satellite DNA was considered to be involved in the hybrid lethality. We examined the hypothesis molecular cytogenetically. The results are (1) three Df(1)zhr chromosomes carried this satellite DNA, and (2) hybrids were viable even if the amount of the satellite DNA in hybrids was increased by adding minichromosomes Dp(1;f)1205 and Dp(1;f)1187 into the genome. These results do not support the above hypothesis.