{"title":"衰老和热量限制对体外大鼠肝细胞/DNA修复实验中四种致癌物遗传毒性的影响","authors":"J.G. Shaddock , R.J. Feuers , M.W. Chou , R.A. Pegram , D.A. Casciano","doi":"10.1016/0921-8734(93)90008-Q","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB<sub>1</sub>, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB<sub>1</sub> produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"295 1","pages":"Pages 19-30"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(93)90008-Q","citationCount":"20","resultStr":"{\"title\":\"Effects of aging and caloric restriction on the genotoxicity of four carcinogens in the in vitro rat hepatocyte/DNA repair assay\",\"authors\":\"J.G. Shaddock , R.J. Feuers , M.W. Chou , R.A. Pegram , D.A. Casciano\",\"doi\":\"10.1016/0921-8734(93)90008-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB<sub>1</sub>, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB<sub>1</sub> produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.</p></div>\",\"PeriodicalId\":100937,\"journal\":{\"name\":\"Mutation Research/DNAging\",\"volume\":\"295 1\",\"pages\":\"Pages 19-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0921-8734(93)90008-Q\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNAging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/092187349390008Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349390008Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of aging and caloric restriction on the genotoxicity of four carcinogens in the in vitro rat hepatocyte/DNA repair assay
The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B1 (AFB1), 7,12-dimethylbenz[a]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB1, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB1 produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.