衰老和热量限制对体外大鼠肝细胞/DNA修复实验中四种致癌物遗传毒性的影响

J.G. Shaddock , R.J. Feuers , M.W. Chou , R.A. Pegram , D.A. Casciano
{"title":"衰老和热量限制对体外大鼠肝细胞/DNA修复实验中四种致癌物遗传毒性的影响","authors":"J.G. Shaddock ,&nbsp;R.J. Feuers ,&nbsp;M.W. Chou ,&nbsp;R.A. Pegram ,&nbsp;D.A. Casciano","doi":"10.1016/0921-8734(93)90008-Q","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB<sub>1</sub>, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB<sub>1</sub> produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"295 1","pages":"Pages 19-30"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(93)90008-Q","citationCount":"20","resultStr":"{\"title\":\"Effects of aging and caloric restriction on the genotoxicity of four carcinogens in the in vitro rat hepatocyte/DNA repair assay\",\"authors\":\"J.G. Shaddock ,&nbsp;R.J. Feuers ,&nbsp;M.W. Chou ,&nbsp;R.A. Pegram ,&nbsp;D.A. Casciano\",\"doi\":\"10.1016/0921-8734(93)90008-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), 7,12-dimethylbenz[<em>a</em>]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB<sub>1</sub>, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB<sub>1</sub> produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.</p></div>\",\"PeriodicalId\":100937,\"journal\":{\"name\":\"Mutation Research/DNAging\",\"volume\":\"295 1\",\"pages\":\"Pages 19-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0921-8734(93)90008-Q\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNAging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/092187349390008Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349390008Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在体外大鼠肝细胞/DNA修复实验中,研究了衰老和慢性热量限制(CR)对四种致癌物质(代表四种不同类型的化学物质)遗传毒性的影响。从年轻、中年和老年雄性Fischer (F344)大鼠中分离肝细胞培养物,这些大鼠分别饲喂自由饮食(AL)或CR饮食(AL的60%)。与年轻AL大鼠相比,用2-乙酰氨基荧光素(2-AAF)、黄曲霉毒素B1 (AFB1)、7,12-二甲基苯[a]蒽(DMBA)和二甲基亚硝胺(DMN)处理老年AL大鼠的肝细胞培养物显示出与年龄相关的DNA修复下降。相比之下,与年轻的AL喂养大鼠相比,来自年轻CR大鼠的培养物显示出与饮食相关的2-AAF、AFB1、DMBA和DMN的DNA修复明显减少。老年CR F344大鼠衍生的培养物在任何化学物质的DNA修复反应中都没有表现出明显的与年龄相关的剂量依赖性下降。然而,在老龄CR大鼠的培养中,10.0 μM AFB1产生了与年轻CR大鼠的反应相关的DNA修复下降。当从Aroclor 1254诱导的大鼠中分离肝细胞时,观察到DNA修复的增加。这些数据表明,DNA修复和/或DNA损伤的减少与年龄和饮食有关,并表明这种减少是由于这些致癌物对遗传毒性物种的代谢激活减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of aging and caloric restriction on the genotoxicity of four carcinogens in the in vitro rat hepatocyte/DNA repair assay

The effects of aging and chronic caloric restriction (CR) on the genotoxicity of four carcinogens, representing four different classes of chemicals, in the in vitro rat hepatocyte/DNA repair assay were investigated. Hepatocyte cultures were isolated from young, middel-aged, and old male Fischer (F344) rats which were maintained on either an ad libitum (AL) or a CR diet (60% of AL). Hepatocyte cultures from old AL rats, treated with 2-acetylaminofluorene (2-AAF), aflatoxin B1 (AFB1), 7,12-dimethylbenz[a]anthracene (DMBA) and dimethylnitrosamine (DMN), exhibited age-related decreases in DNA repair as compared to young AL rats. By contrast, cultures from young CR rats exhibited significant diet-related decreases in DNA repair with 2-AAF, AFB1, DMBA and DMN, when compared to results from young AL diet-fed rats. Old CR F344 rat derived cultures exhibited no significant age-related dose-dependent decrease in the DNA repair response with any of the chemicals tested. However, in cultures from old CR rats 10.0 μM AFB1 produced an age-related decrease in DNA repair from the response observed in young CR rats. When hepatocytes were isolated from Aroclor 1254-induced rats, increases in DNA repair were observed. These data indicate an age- and diet-related decrease in DNA repair and/or DNA damage and suggest that this decrease is due to a decrease in metabolic activation of these carcinogens to genotoxic species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publisher's note Editorial An accessory protein enhances both DNA binding and activity of DNA polymerase α isolated from normal, but not transformed, human fibroblasts Differences in the spectrum of spontaneous mutations in the hprt gene between tumor cells of the microsatellite mutator phenotype Spermatid micronucleus analysis of aging effects in hamsters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1