P. Maneesha, Suresh Chandra Baral, E.G. Rini, Somaditya Sen
{"title":"综述了Pr2NiMnO6双钙钛矿磁性和电学性质结构相关性的研究进展","authors":"P. Maneesha, Suresh Chandra Baral, E.G. Rini, Somaditya Sen","doi":"10.1016/j.progsolidstchem.2023.100402","DOIUrl":null,"url":null,"abstract":"<div><p><span>Double perovskites </span><em>R</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>R</em> = Rare earth element) (<em>RNM</em>O) are a significant class of materials owing to their varied tunability of the magnetic and electrical properties with the structural modifications. <em>Pr</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>PNMO</em><span>) is one of the least explored members of this series, which shows spin-phonon coupling, magnetocaloric effect<span> and electrochemical performance<span> for various applications such as spintronics, magnetocaloric refrigerant and solid oxide fuel cells. Most of the studies in </span></span></span><em>PNMO</em><span> are limited to the application domain and focus on the comparative study with different rare earth elements. Detailed structural studies like neutron diffraction are sparse in </span><em>PNMO</em> samples which will give a perception of the <em>A/B</em>-site cationic (<em>Pr/Ni/Mn</em>-site cationic) ordering in the compound that strongly depends on the physical and chemical properties. This review article goes through the various aspects of <em>PNMO</em> materials that have been reported till now and showcases the octahedral distortions and corresponding structural changes and the exchange interactions, which in turn correlate with the magnetic and electrical properties. The comparison study of <em>PNMO</em> with other members of the <em>RNMO</em> (<em>R</em> = Rare earth) family and the relevance of <em>PNMO</em> over other members is also tried to showcase in this article. This review article provides insight into the scope of studies in <em>PNMO</em> material for exploring unexposed properties of the materials in the double perovskite family.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100402"},"PeriodicalIF":9.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An overview of the recent developments in the structural correlation of magnetic and electrical properties of Pr2NiMnO6 double perovskite\",\"authors\":\"P. Maneesha, Suresh Chandra Baral, E.G. Rini, Somaditya Sen\",\"doi\":\"10.1016/j.progsolidstchem.2023.100402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Double perovskites </span><em>R</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>R</em> = Rare earth element) (<em>RNM</em>O) are a significant class of materials owing to their varied tunability of the magnetic and electrical properties with the structural modifications. <em>Pr</em><sub><em>2</em></sub><em>NiMnO</em><sub><em>6</em></sub> (<em>PNMO</em><span>) is one of the least explored members of this series, which shows spin-phonon coupling, magnetocaloric effect<span> and electrochemical performance<span> for various applications such as spintronics, magnetocaloric refrigerant and solid oxide fuel cells. Most of the studies in </span></span></span><em>PNMO</em><span> are limited to the application domain and focus on the comparative study with different rare earth elements. Detailed structural studies like neutron diffraction are sparse in </span><em>PNMO</em> samples which will give a perception of the <em>A/B</em>-site cationic (<em>Pr/Ni/Mn</em>-site cationic) ordering in the compound that strongly depends on the physical and chemical properties. This review article goes through the various aspects of <em>PNMO</em> materials that have been reported till now and showcases the octahedral distortions and corresponding structural changes and the exchange interactions, which in turn correlate with the magnetic and electrical properties. The comparison study of <em>PNMO</em> with other members of the <em>RNMO</em> (<em>R</em> = Rare earth) family and the relevance of <em>PNMO</em> over other members is also tried to showcase in this article. This review article provides insight into the scope of studies in <em>PNMO</em> material for exploring unexposed properties of the materials in the double perovskite family.</p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":\"70 \",\"pages\":\"Article 100402\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678623000134\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000134","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
An overview of the recent developments in the structural correlation of magnetic and electrical properties of Pr2NiMnO6 double perovskite
Double perovskites R2NiMnO6 (R = Rare earth element) (RNMO) are a significant class of materials owing to their varied tunability of the magnetic and electrical properties with the structural modifications. Pr2NiMnO6 (PNMO) is one of the least explored members of this series, which shows spin-phonon coupling, magnetocaloric effect and electrochemical performance for various applications such as spintronics, magnetocaloric refrigerant and solid oxide fuel cells. Most of the studies in PNMO are limited to the application domain and focus on the comparative study with different rare earth elements. Detailed structural studies like neutron diffraction are sparse in PNMO samples which will give a perception of the A/B-site cationic (Pr/Ni/Mn-site cationic) ordering in the compound that strongly depends on the physical and chemical properties. This review article goes through the various aspects of PNMO materials that have been reported till now and showcases the octahedral distortions and corresponding structural changes and the exchange interactions, which in turn correlate with the magnetic and electrical properties. The comparison study of PNMO with other members of the RNMO (R = Rare earth) family and the relevance of PNMO over other members is also tried to showcase in this article. This review article provides insight into the scope of studies in PNMO material for exploring unexposed properties of the materials in the double perovskite family.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.