用VOF-LPT混合方法模拟超声速横流中角度注入液体射流破裂

IF 3.6 2区 工程技术 Q1 MECHANICS International Journal of Multiphase Flow Pub Date : 2023-09-01 DOI:10.1016/j.ijmultiphaseflow.2023.104503
Wenyuan Zhou , Bing Chen , Qingbo Zhu , Sihang Rao , Xu Xu
{"title":"用VOF-LPT混合方法模拟超声速横流中角度注入液体射流破裂","authors":"Wenyuan Zhou ,&nbsp;Bing Chen ,&nbsp;Qingbo Zhu ,&nbsp;Sihang Rao ,&nbsp;Xu Xu","doi":"10.1016/j.ijmultiphaseflow.2023.104503","DOIUrl":null,"url":null,"abstract":"<div><p>The breakup of angled-injected liquid jets in supersonic airflow is investigated numerically by a hybrid Volume of Fluid and Lagrangian Particle Tracking (VOF-LPT) method. A Multi-criterion adaptive mesh refinement (AMR) procedure and dynamic load balancing (DLB) algorithm are applied to improve the accuracy of interface and shock wave characteristics and reduce the use of computational resources and liquid mass loss. The flow characteristics of the spray field and penetration depth of the angled-injected liquid jet from the simulations agreed well with the experimental results. Under the supersonic crossflow conditions, the jet has momentum in the counter-flow direction that improves gas-liquid interactions. The penetration depth of the liquid jet increase with the increase of the injection angle. In particular, the penetration depth of the angled-injected liquid jet is given in the: <span><math><mrow><mi>y</mi><mo>/</mo><mi>d</mi><mo>=</mo><mn>0.12</mn><mo>·</mo><mi>sin</mi><mrow><mo>(</mo><mrow><mn>2</mn><mi>θ</mi><mo>/</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>·</mo><msup><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>sin</mi><mo>(</mo><mrow><mn>2</mn><mi>θ</mi><mo>/</mo><mn>3</mn></mrow><mo>)</mo></mrow></msup><mo>)</mo></mrow><mrow><mn>3.185</mn></mrow></msup><mo>·</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>0.389</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mi>x</mi><mo>/</mo><mi>d</mi></mrow><mo>)</mo></mrow><mrow><mn>0.309</mn></mrow></msup></mrow></math></span>. Moreover, the liquid jet at a larger injection angle has a larger spray spread angle and wider wake region due to the larger windward area. Furthermore, the total pressure loss of airflow increases with the injection angle increasing. Considering the total pressure loss for all injection conditions is lower than 14%, the total pressure loss caused by the injection angle increase can be negligible.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"166 ","pages":"Article 104503"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of angled-injected liquid jet breakup in supersonic crossflow by a hybrid VOF-LPT method\",\"authors\":\"Wenyuan Zhou ,&nbsp;Bing Chen ,&nbsp;Qingbo Zhu ,&nbsp;Sihang Rao ,&nbsp;Xu Xu\",\"doi\":\"10.1016/j.ijmultiphaseflow.2023.104503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The breakup of angled-injected liquid jets in supersonic airflow is investigated numerically by a hybrid Volume of Fluid and Lagrangian Particle Tracking (VOF-LPT) method. A Multi-criterion adaptive mesh refinement (AMR) procedure and dynamic load balancing (DLB) algorithm are applied to improve the accuracy of interface and shock wave characteristics and reduce the use of computational resources and liquid mass loss. The flow characteristics of the spray field and penetration depth of the angled-injected liquid jet from the simulations agreed well with the experimental results. Under the supersonic crossflow conditions, the jet has momentum in the counter-flow direction that improves gas-liquid interactions. The penetration depth of the liquid jet increase with the increase of the injection angle. In particular, the penetration depth of the angled-injected liquid jet is given in the: <span><math><mrow><mi>y</mi><mo>/</mo><mi>d</mi><mo>=</mo><mn>0.12</mn><mo>·</mo><mi>sin</mi><mrow><mo>(</mo><mrow><mn>2</mn><mi>θ</mi><mo>/</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>·</mo><msup><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>sin</mi><mo>(</mo><mrow><mn>2</mn><mi>θ</mi><mo>/</mo><mn>3</mn></mrow><mo>)</mo></mrow></msup><mo>)</mo></mrow><mrow><mn>3.185</mn></mrow></msup><mo>·</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>0.389</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mi>x</mi><mo>/</mo><mi>d</mi></mrow><mo>)</mo></mrow><mrow><mn>0.309</mn></mrow></msup></mrow></math></span>. Moreover, the liquid jet at a larger injection angle has a larger spray spread angle and wider wake region due to the larger windward area. Furthermore, the total pressure loss of airflow increases with the injection angle increasing. Considering the total pressure loss for all injection conditions is lower than 14%, the total pressure loss caused by the injection angle increase can be negligible.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"166 \",\"pages\":\"Article 104503\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932223001246\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932223001246","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

采用流体体积法和拉格朗日粒子跟踪法(VOF-LPT)对超音速气流中角喷射液体射流的破裂进行了数值研究。采用多准则自适应网格细化(AMR)和动态负载平衡(DLB)算法,提高了界面和激波特性的精度,减少了计算资源的使用和液体质量损失。模拟结果与实验结果吻合较好,模拟结果与实验结果吻合较好。在超声速横流条件下,射流具有逆流方向的动量,改善了气液相互作用。液体射流的穿透深度随喷射角的增大而增大。其中,斜注入液体射流的侵透深度为:y/d=0.12·sin(2θ/3)·(esin(2θ/3))3.185·q0.389(x/d)0.309。此外,较大的喷射角下的液体射流由于迎风面积较大,其喷雾扩散角也较大,尾迹区域也较宽。气流总压损失随喷射角的增大而增大。考虑到所有注入工况下的总压损失均小于14%,增加注入角造成的总压损失可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of angled-injected liquid jet breakup in supersonic crossflow by a hybrid VOF-LPT method

The breakup of angled-injected liquid jets in supersonic airflow is investigated numerically by a hybrid Volume of Fluid and Lagrangian Particle Tracking (VOF-LPT) method. A Multi-criterion adaptive mesh refinement (AMR) procedure and dynamic load balancing (DLB) algorithm are applied to improve the accuracy of interface and shock wave characteristics and reduce the use of computational resources and liquid mass loss. The flow characteristics of the spray field and penetration depth of the angled-injected liquid jet from the simulations agreed well with the experimental results. Under the supersonic crossflow conditions, the jet has momentum in the counter-flow direction that improves gas-liquid interactions. The penetration depth of the liquid jet increase with the increase of the injection angle. In particular, the penetration depth of the angled-injected liquid jet is given in the: y/d=0.12·sin(2θ/3)·(esin(2θ/3))3.185·q0.389(x/d)0.309. Moreover, the liquid jet at a larger injection angle has a larger spray spread angle and wider wake region due to the larger windward area. Furthermore, the total pressure loss of airflow increases with the injection angle increasing. Considering the total pressure loss for all injection conditions is lower than 14%, the total pressure loss caused by the injection angle increase can be negligible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
期刊最新文献
Uncertainty quantification for the drag reduction of microbubble-laden fluid flow in a horizontal channel Two-phase flows downstream, upstream and within Plate Heat Exchangers A simple and efficient finite difference scheme to the Cahn–Hilliard–Navier–Stokes system equations Editorial Board A simple explicit thermodynamic closure for multi-fluid simulations including complex vapor–liquid equilibria: Application to NH3 H2O mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1