{"title":"利用形状设计的二维多边形胶体操纵自组装结构","authors":"Yiwu Zong , Kun Zhao","doi":"10.1016/j.cossms.2022.101022","DOIUrl":null,"url":null,"abstract":"<div><p>Manipulating self-assembled structures through shape-control of constitute particles is a fascinating yet quite challenging route to make new functional materials that can be used in a variety of applications. Toward this goal, the physics underlying the relation between the shape of constitute building blocks and their self-assembled structures (shape-structure relation) is the key and need to be better understood first. With the advances in particle fabrication techniques, our library of available anisotropic building blocks has expanded enormously, which opens up new opportunities for studying the shape-structure relation. There have been extensive studies performed to explore the self-assembly of anisotropic building blocks and tremendous progress has been made. In this mini-review, we will report recent progress on the self-assembly of non-spherical colloids both in experiments and in simulations. We focus on the self-assembly of polygonal platelets with a variety of shapes in two dimensions including regular polygonal shapes and a specific type of shape, kite-shape. Associated models that are helpful to understand the shape-structure relation are also summarized. We conclude this review with a brief discussion of current challenges in the field.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101022"},"PeriodicalIF":12.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D\",\"authors\":\"Yiwu Zong , Kun Zhao\",\"doi\":\"10.1016/j.cossms.2022.101022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Manipulating self-assembled structures through shape-control of constitute particles is a fascinating yet quite challenging route to make new functional materials that can be used in a variety of applications. Toward this goal, the physics underlying the relation between the shape of constitute building blocks and their self-assembled structures (shape-structure relation) is the key and need to be better understood first. With the advances in particle fabrication techniques, our library of available anisotropic building blocks has expanded enormously, which opens up new opportunities for studying the shape-structure relation. There have been extensive studies performed to explore the self-assembly of anisotropic building blocks and tremendous progress has been made. In this mini-review, we will report recent progress on the self-assembly of non-spherical colloids both in experiments and in simulations. We focus on the self-assembly of polygonal platelets with a variety of shapes in two dimensions including regular polygonal shapes and a specific type of shape, kite-shape. Associated models that are helpful to understand the shape-structure relation are also summarized. We conclude this review with a brief discussion of current challenges in the field.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 6\",\"pages\":\"Article 101022\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000420\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000420","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D
Manipulating self-assembled structures through shape-control of constitute particles is a fascinating yet quite challenging route to make new functional materials that can be used in a variety of applications. Toward this goal, the physics underlying the relation between the shape of constitute building blocks and their self-assembled structures (shape-structure relation) is the key and need to be better understood first. With the advances in particle fabrication techniques, our library of available anisotropic building blocks has expanded enormously, which opens up new opportunities for studying the shape-structure relation. There have been extensive studies performed to explore the self-assembly of anisotropic building blocks and tremendous progress has been made. In this mini-review, we will report recent progress on the self-assembly of non-spherical colloids both in experiments and in simulations. We focus on the self-assembly of polygonal platelets with a variety of shapes in two dimensions including regular polygonal shapes and a specific type of shape, kite-shape. Associated models that are helpful to understand the shape-structure relation are also summarized. We conclude this review with a brief discussion of current challenges in the field.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field