Gina L. Quirarte , Sara E. Cruz-Morales , Alejandro Cepeda , Maritza García-Montañez , Gabriel Roldán-Roldán , Roberto A. Prado-Alcalá
{"title":"中枢毒蕈碱阻断对被动回避的影响:顺行性遗忘,状态依赖,还是两者兼而有之?","authors":"Gina L. Quirarte , Sara E. Cruz-Morales , Alejandro Cepeda , Maritza García-Montañez , Gabriel Roldán-Roldán , Roberto A. Prado-Alcalá","doi":"10.1016/S0163-1047(05)80054-8","DOIUrl":null,"url":null,"abstract":"<div><p>It was recently reported that administration of relatively high intensities of footshock (overreinforcement) during training of passive avoidance protected animals against the amnesic effect of scopolamine, injected 5 min after training. This was interpreted in terms of a lesser involvement of acetylcholine in memory consolidation. An alternative explanation was that overreinforcement accelerated the consolidation process, which could have taken place before the injection of scopolamine. To test for this possibility, male Wistar rats were injected with 4, 8, or 12 mg/kg of scopolamine, 5 min before training with low or high levels of footshock and then tested for retention of the task. Scopolamine induced the expected memory deficit after the low-intensity footshock; after overreinforcement the higher doses of scopolamine induced state dependency, while no deficits were produced with the lower dose. It was concluded that: (a) acetylcholine is indeed involved in memory consolidation of passive avoidance; (b) scopolamine interacts with high footshock levels to produce state dependency; and (c) when relatively low doses of scopolamine are used in conditions of overreinforcement, protection against scopolamine-induced amnesia becomes evident.</p></div>","PeriodicalId":8732,"journal":{"name":"Behavioral and neural biology","volume":"62 1","pages":"Pages 15-20"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0163-1047(05)80054-8","citationCount":"25","resultStr":"{\"title\":\"Effects of central muscarinic blockade on passive avoidance: Anterograde amnesia, state dependency, or both?\",\"authors\":\"Gina L. Quirarte , Sara E. Cruz-Morales , Alejandro Cepeda , Maritza García-Montañez , Gabriel Roldán-Roldán , Roberto A. Prado-Alcalá\",\"doi\":\"10.1016/S0163-1047(05)80054-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It was recently reported that administration of relatively high intensities of footshock (overreinforcement) during training of passive avoidance protected animals against the amnesic effect of scopolamine, injected 5 min after training. This was interpreted in terms of a lesser involvement of acetylcholine in memory consolidation. An alternative explanation was that overreinforcement accelerated the consolidation process, which could have taken place before the injection of scopolamine. To test for this possibility, male Wistar rats were injected with 4, 8, or 12 mg/kg of scopolamine, 5 min before training with low or high levels of footshock and then tested for retention of the task. Scopolamine induced the expected memory deficit after the low-intensity footshock; after overreinforcement the higher doses of scopolamine induced state dependency, while no deficits were produced with the lower dose. It was concluded that: (a) acetylcholine is indeed involved in memory consolidation of passive avoidance; (b) scopolamine interacts with high footshock levels to produce state dependency; and (c) when relatively low doses of scopolamine are used in conditions of overreinforcement, protection against scopolamine-induced amnesia becomes evident.</p></div>\",\"PeriodicalId\":8732,\"journal\":{\"name\":\"Behavioral and neural biology\",\"volume\":\"62 1\",\"pages\":\"Pages 15-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0163-1047(05)80054-8\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and neural biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0163104705800548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and neural biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163104705800548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of central muscarinic blockade on passive avoidance: Anterograde amnesia, state dependency, or both?
It was recently reported that administration of relatively high intensities of footshock (overreinforcement) during training of passive avoidance protected animals against the amnesic effect of scopolamine, injected 5 min after training. This was interpreted in terms of a lesser involvement of acetylcholine in memory consolidation. An alternative explanation was that overreinforcement accelerated the consolidation process, which could have taken place before the injection of scopolamine. To test for this possibility, male Wistar rats were injected with 4, 8, or 12 mg/kg of scopolamine, 5 min before training with low or high levels of footshock and then tested for retention of the task. Scopolamine induced the expected memory deficit after the low-intensity footshock; after overreinforcement the higher doses of scopolamine induced state dependency, while no deficits were produced with the lower dose. It was concluded that: (a) acetylcholine is indeed involved in memory consolidation of passive avoidance; (b) scopolamine interacts with high footshock levels to produce state dependency; and (c) when relatively low doses of scopolamine are used in conditions of overreinforcement, protection against scopolamine-induced amnesia becomes evident.