Liuqian Yang, Yanan Wang, Jiakai Liu, Dandan Ouyang, Dongxu Chen, Xueyan Xue, Nan Xue, Hui Zhu* and Jiao Yin*,
{"title":"基于凝胶辅助策略的高容量、快速响应电容式海水淡化的富B、n碳纳米片剪裁","authors":"Liuqian Yang, Yanan Wang, Jiakai Liu, Dandan Ouyang, Dongxu Chen, Xueyan Xue, Nan Xue, Hui Zhu* and Jiao Yin*, ","doi":"10.1021/acsami.3c07630","DOIUrl":null,"url":null,"abstract":"<p >Designing high-performance carbonous electrodes for capacitive deionization with remarkable salt adsorption capacity (SAC) and outstanding salt adsorption rate (SAR) is quite significant yet challenging for brackish water desalination. Herein, a unique gelation-assisted strategy is proposed to tailor two-dimensional B and N-enriched carbon nanosheets (BNCTs) for efficient desalination. During the synthesis process, boric acid and polyvinyl alcohol were cross-linked to form a gelation template for the carbon precursor (polyethyleneimine), which endows BNCTs with ultrathin thickness (~2 nm) and ultrahigh heteroatoms doping level (14.5 atom % of B and 14.8 atom % of N) after freeze-drying and pyrolysis. The laminar B, N-doped carbon enables an excellent SAC of 42.5 mg g<sup>–1</sup> and fast SAR of 4.25 mg g<sup>–1</sup> min<sup>–1</sup> in 500 mg L<sup>–1</sup> NaCl solution, both of which are four times as much as those of activated carbon. Moreover, the density functional theory (DFT) calculation demonstrates that the dual doping of B and N atoms firmly enhances the adsorption capacity of Na<sup>+</sup>, leading to a prominent chemical SAC for brackish water. This work paves a new way to rationally integrate both conducive surface morphology and systematic effects of B, N doping to construct high-efficiency carbonaceous electrodes for desalination.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tailoring B, N-Enriched Carbon Nanosheets via a Gelation-Assisted Strategy for High-Capacity and Fast-Response Capacitive Desalination\",\"authors\":\"Liuqian Yang, Yanan Wang, Jiakai Liu, Dandan Ouyang, Dongxu Chen, Xueyan Xue, Nan Xue, Hui Zhu* and Jiao Yin*, \",\"doi\":\"10.1021/acsami.3c07630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Designing high-performance carbonous electrodes for capacitive deionization with remarkable salt adsorption capacity (SAC) and outstanding salt adsorption rate (SAR) is quite significant yet challenging for brackish water desalination. Herein, a unique gelation-assisted strategy is proposed to tailor two-dimensional B and N-enriched carbon nanosheets (BNCTs) for efficient desalination. During the synthesis process, boric acid and polyvinyl alcohol were cross-linked to form a gelation template for the carbon precursor (polyethyleneimine), which endows BNCTs with ultrathin thickness (~2 nm) and ultrahigh heteroatoms doping level (14.5 atom % of B and 14.8 atom % of N) after freeze-drying and pyrolysis. The laminar B, N-doped carbon enables an excellent SAC of 42.5 mg g<sup>–1</sup> and fast SAR of 4.25 mg g<sup>–1</sup> min<sup>–1</sup> in 500 mg L<sup>–1</sup> NaCl solution, both of which are four times as much as those of activated carbon. Moreover, the density functional theory (DFT) calculation demonstrates that the dual doping of B and N atoms firmly enhances the adsorption capacity of Na<sup>+</sup>, leading to a prominent chemical SAC for brackish water. This work paves a new way to rationally integrate both conducive surface morphology and systematic effects of B, N doping to construct high-efficiency carbonaceous electrodes for desalination.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.3c07630\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c07630","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring B, N-Enriched Carbon Nanosheets via a Gelation-Assisted Strategy for High-Capacity and Fast-Response Capacitive Desalination
Designing high-performance carbonous electrodes for capacitive deionization with remarkable salt adsorption capacity (SAC) and outstanding salt adsorption rate (SAR) is quite significant yet challenging for brackish water desalination. Herein, a unique gelation-assisted strategy is proposed to tailor two-dimensional B and N-enriched carbon nanosheets (BNCTs) for efficient desalination. During the synthesis process, boric acid and polyvinyl alcohol were cross-linked to form a gelation template for the carbon precursor (polyethyleneimine), which endows BNCTs with ultrathin thickness (~2 nm) and ultrahigh heteroatoms doping level (14.5 atom % of B and 14.8 atom % of N) after freeze-drying and pyrolysis. The laminar B, N-doped carbon enables an excellent SAC of 42.5 mg g–1 and fast SAR of 4.25 mg g–1 min–1 in 500 mg L–1 NaCl solution, both of which are four times as much as those of activated carbon. Moreover, the density functional theory (DFT) calculation demonstrates that the dual doping of B and N atoms firmly enhances the adsorption capacity of Na+, leading to a prominent chemical SAC for brackish water. This work paves a new way to rationally integrate both conducive surface morphology and systematic effects of B, N doping to construct high-efficiency carbonaceous electrodes for desalination.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.