常压氧合作为减压病的急救措施。

J Wendling
{"title":"常压氧合作为减压病的急救措施。","authors":"J Wendling","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Most divers and diving medicine specialists know that application of normobaric oxygen as first aid after a bubble disease incident is highly effective. However, as yet technical difficulties acted as a deterrent to using normobaric oxygen at the diving site. This can now be overcome by a newer technique. To be efficient, any therapy of bubble disease should follow three main principles: maximal partial pressure of inhaled oxygen (i.e. 100 kpa in normobaric, and 280 kpa in hyperbaric conditions); minimal partial pressure of inhaled nitrogen, which should ideally be near zero; immediate start of therapy, if possible at the diving site, but not later than 2 hours after the onset of the first symptoms. However, it has to be borne in mind that for an efficient normobaric oxygenation (100%), the standard apparatus design without oxygen reservoir is obsolete, for it offers at most 40% oxygen to the lungs. Currently the following technical approaches for an efficient normobaric oxygenation are available: open one-way systems with tightly fitting mask and oxygen reservoir bag (type Ambu or Leardal, etc.); open systems with on-demand regulation and tightly fitting mouth piece (type SCUBA, or Bird-respirator); closed systems with CO2 absorber (type oxygen rebreathing diving gear). The closed system is a genuine technical advance, because it needs 15 times less oxygen than open systems (about 90 liters oxygen for a 3-hours oxygenation run). Such an apparatus is thus of light weight, far less cumbersome, and nevertheless highly efficient. The therapy should start immediately at the site of the mishap and be maintained during the transport to the next HBO-unit (usually 3 to 6 hours).(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":76534,"journal":{"name":"Schweizerische Zeitschrift fur Sportmedizin","volume":"41 4","pages":"167-72"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Normobaric oxygenation as a first-aid measure in decompression sickness].\",\"authors\":\"J Wendling\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most divers and diving medicine specialists know that application of normobaric oxygen as first aid after a bubble disease incident is highly effective. However, as yet technical difficulties acted as a deterrent to using normobaric oxygen at the diving site. This can now be overcome by a newer technique. To be efficient, any therapy of bubble disease should follow three main principles: maximal partial pressure of inhaled oxygen (i.e. 100 kpa in normobaric, and 280 kpa in hyperbaric conditions); minimal partial pressure of inhaled nitrogen, which should ideally be near zero; immediate start of therapy, if possible at the diving site, but not later than 2 hours after the onset of the first symptoms. However, it has to be borne in mind that for an efficient normobaric oxygenation (100%), the standard apparatus design without oxygen reservoir is obsolete, for it offers at most 40% oxygen to the lungs. Currently the following technical approaches for an efficient normobaric oxygenation are available: open one-way systems with tightly fitting mask and oxygen reservoir bag (type Ambu or Leardal, etc.); open systems with on-demand regulation and tightly fitting mouth piece (type SCUBA, or Bird-respirator); closed systems with CO2 absorber (type oxygen rebreathing diving gear). The closed system is a genuine technical advance, because it needs 15 times less oxygen than open systems (about 90 liters oxygen for a 3-hours oxygenation run). Such an apparatus is thus of light weight, far less cumbersome, and nevertheless highly efficient. The therapy should start immediately at the site of the mishap and be maintained during the transport to the next HBO-unit (usually 3 to 6 hours).(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":76534,\"journal\":{\"name\":\"Schweizerische Zeitschrift fur Sportmedizin\",\"volume\":\"41 4\",\"pages\":\"167-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schweizerische Zeitschrift fur Sportmedizin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schweizerische Zeitschrift fur Sportmedizin","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数潜水员和潜水医学专家都知道,在气泡病事件发生后,应用常压氧作为急救是非常有效的。然而,迄今为止,技术上的困难阻碍了在潜水地点使用常压氧气。现在,一种新的技术可以克服这个问题。为了提高治疗效果,任何气泡病的治疗都应遵循三个主要原则:吸入氧气的最大分压(即常压条件下为100 kpa,高压条件下为280 kpa);吸入氮气的最小分压,理想情况下应接近于零;如果可能,在潜水地点立即开始治疗,但不迟于首次症状出现后2小时。然而,必须记住的是,为了有效的正压氧化(100%),没有氧气罐的标准设备设计已经过时了,因为它最多为肺部提供40%的氧气。目前,有效的正压氧合有以下技术方法:带紧贴合面罩和储氧袋的单向开放系统(Ambu或Leardal等);开放系统,按需调节和紧密配合口片(型水肺,或鸟类呼吸器);带CO2吸收器的封闭式系统(式氧气再呼吸潜水装置)。封闭系统是一项真正的技术进步,因为它需要的氧气比开放系统少15倍(3小时充氧运行约90升氧气)。这样的装置重量轻,远不笨重,但效率很高。治疗应立即在发生事故的地方开始,并在运送到下一个hbo单位期间保持(通常为3至6小时)。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Normobaric oxygenation as a first-aid measure in decompression sickness].

Most divers and diving medicine specialists know that application of normobaric oxygen as first aid after a bubble disease incident is highly effective. However, as yet technical difficulties acted as a deterrent to using normobaric oxygen at the diving site. This can now be overcome by a newer technique. To be efficient, any therapy of bubble disease should follow three main principles: maximal partial pressure of inhaled oxygen (i.e. 100 kpa in normobaric, and 280 kpa in hyperbaric conditions); minimal partial pressure of inhaled nitrogen, which should ideally be near zero; immediate start of therapy, if possible at the diving site, but not later than 2 hours after the onset of the first symptoms. However, it has to be borne in mind that for an efficient normobaric oxygenation (100%), the standard apparatus design without oxygen reservoir is obsolete, for it offers at most 40% oxygen to the lungs. Currently the following technical approaches for an efficient normobaric oxygenation are available: open one-way systems with tightly fitting mask and oxygen reservoir bag (type Ambu or Leardal, etc.); open systems with on-demand regulation and tightly fitting mouth piece (type SCUBA, or Bird-respirator); closed systems with CO2 absorber (type oxygen rebreathing diving gear). The closed system is a genuine technical advance, because it needs 15 times less oxygen than open systems (about 90 liters oxygen for a 3-hours oxygenation run). Such an apparatus is thus of light weight, far less cumbersome, and nevertheless highly efficient. The therapy should start immediately at the site of the mishap and be maintained during the transport to the next HBO-unit (usually 3 to 6 hours).(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sport Psychology: Performance Enhancement, Performance Inhibition, Individuals, and Teams [Static deviations in high-performance athletes]. [Methodological studies on estimating the loss of sodium, potassium, calcium and magnesium exemplified by a 10-km run]. [Normobaric oxygenation as a first-aid measure in decompression sickness]. [Preliminary diagnostic measures for performing hyperbaric oxygen therapy in a diving accident].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1