神经网络作为从头算分子势能面紧凑表示的工具

Erwin Tafeit, Willibald Estelberger, Renate Horejsi, Reinhard Moeller, Karl Oettl, Karoline Vrecko, Gilbert Reibnegger
{"title":"神经网络作为从头算分子势能面紧凑表示的工具","authors":"Erwin Tafeit,&nbsp;Willibald Estelberger,&nbsp;Renate Horejsi,&nbsp;Reinhard Moeller,&nbsp;Karl Oettl,&nbsp;Karoline Vrecko,&nbsp;Gilbert Reibnegger","doi":"10.1016/0263-7855(95)00087-9","DOIUrl":null,"url":null,"abstract":"<div><p><em>Ab initio</em> quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using <em>ab initio</em> data on conformational properties of the cofactor (<em>6R,1′R,2′S</em>)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.</p></div>","PeriodicalId":73837,"journal":{"name":"Journal of molecular graphics","volume":"14 1","pages":"Pages 12-18"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0263-7855(95)00087-9","citationCount":"25","resultStr":"{\"title\":\"Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces\",\"authors\":\"Erwin Tafeit,&nbsp;Willibald Estelberger,&nbsp;Renate Horejsi,&nbsp;Reinhard Moeller,&nbsp;Karl Oettl,&nbsp;Karoline Vrecko,&nbsp;Gilbert Reibnegger\",\"doi\":\"10.1016/0263-7855(95)00087-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Ab initio</em> quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using <em>ab initio</em> data on conformational properties of the cofactor (<em>6R,1′R,2′S</em>)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.</p></div>\",\"PeriodicalId\":73837,\"journal\":{\"name\":\"Journal of molecular graphics\",\"volume\":\"14 1\",\"pages\":\"Pages 12-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0263-7855(95)00087-9\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0263785595000879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0263785595000879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

从头算分子性质的量子化学计算,例如,扭转势能,即使对于中等大小的分子,如果使用具有合理质量的基集,也需要大量的计算工作。利用从头计算的辅助因子(6R, 1'R, 2'S)-5,6,7,8-四氢生物terin构象性质的数据,我们证明了误差反向传播网络可以有效地近似复杂的函数关系,如柔性分子的扭转势能面。我们的试点模拟表明,经过适当训练的神经网络可能为量子化学获得的信息提供极其紧凑的存储介质。此外,当涉及到使用存储信息时,它们是非常舒适的工具。证明了一种可能的应用,即计算松弛扭转能面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces

Ab initio quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using ab initio data on conformational properties of the cofactor (6R,1′R,2′S)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of dry-aging conditions for chicken meat using the electric field supercooling system. Diffusion Tensor Imaging in Parenchymal Neuro-Behçet's Disease. Resilience predicts posttraumatic cognitions after a trauma reminder task and subsequent positive emotion induction among veterans with PTSD. Correction to Szabo et al. (2022). HOLE: A program for the analysis of the pore dimensions of ion channel structural models Modeling polysaccharides: Present status and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1