下颌形状的椭圆傅立叶分析。

V F Ferrario, C Sforza, M Guazzi, G Serrao
{"title":"下颌形状的椭圆傅立叶分析。","authors":"V F Ferrario,&nbsp;C Sforza,&nbsp;M Guazzi,&nbsp;G Serrao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Craniofacial growth and development involve both size and shape variations. Shape variations can be assessed independently from size using mathematical methods such as the elliptic Fourier analysis, which allows a global evaluation of the shape of organs identified by their outlines independently from size, spatial orientation, and relation to reference planes. The mandibular outlines were digitized from the tracings of the Bolton standards (lateral view) from 1 to 18 years of age, and the age differences in shape independently from size were quantified using the elliptic Fourier series. A \"morphologic distance\" MD (i.e., a measurement of differences in shape) between each younger mandible and the oldest one was computed using the relevant Fourier coefficients like the cartesian coordinates in standard metric measurements. MD equals 0 when the profiles are identical. MD (Y) between the Bolton standard at 18 years of age and all the other Bolton tracings were significantly correlated (correlation coefficient r = 0.987, P < or = 0.001) with age (X) (semi-logarithmic interpolation Y = -3.87.log(e) X + 13.593). Differences between the size-independent shape of the Bolton standard at 18 years and the relevant plot at 1 year were located at the chin, gonion, coronoid process, anterior border of the ramus. Size differences were measured from the areas enclosed by the mandibular outlines. Mandibular area (Y) increased about 2.58 times from 1 to 18 years of age (X) (Y = -0.071.X2 + 4.917.X + 35.904, r = 0.997, P < or = 0.001). The shape effect was largely overwhelmed by the very evident size increments, and it could be measured only using the proper mathematical methods. The method developed could also be applied to the comparison between healthy and diseased individuals.</p>","PeriodicalId":77201,"journal":{"name":"Journal of craniofacial genetics and developmental biology","volume":"16 4","pages":"208-17"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic Fourier analysis of mandibular shape.\",\"authors\":\"V F Ferrario,&nbsp;C Sforza,&nbsp;M Guazzi,&nbsp;G Serrao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Craniofacial growth and development involve both size and shape variations. Shape variations can be assessed independently from size using mathematical methods such as the elliptic Fourier analysis, which allows a global evaluation of the shape of organs identified by their outlines independently from size, spatial orientation, and relation to reference planes. The mandibular outlines were digitized from the tracings of the Bolton standards (lateral view) from 1 to 18 years of age, and the age differences in shape independently from size were quantified using the elliptic Fourier series. A \\\"morphologic distance\\\" MD (i.e., a measurement of differences in shape) between each younger mandible and the oldest one was computed using the relevant Fourier coefficients like the cartesian coordinates in standard metric measurements. MD equals 0 when the profiles are identical. MD (Y) between the Bolton standard at 18 years of age and all the other Bolton tracings were significantly correlated (correlation coefficient r = 0.987, P < or = 0.001) with age (X) (semi-logarithmic interpolation Y = -3.87.log(e) X + 13.593). Differences between the size-independent shape of the Bolton standard at 18 years and the relevant plot at 1 year were located at the chin, gonion, coronoid process, anterior border of the ramus. Size differences were measured from the areas enclosed by the mandibular outlines. Mandibular area (Y) increased about 2.58 times from 1 to 18 years of age (X) (Y = -0.071.X2 + 4.917.X + 35.904, r = 0.997, P < or = 0.001). The shape effect was largely overwhelmed by the very evident size increments, and it could be measured only using the proper mathematical methods. The method developed could also be applied to the comparison between healthy and diseased individuals.</p>\",\"PeriodicalId\":77201,\"journal\":{\"name\":\"Journal of craniofacial genetics and developmental biology\",\"volume\":\"16 4\",\"pages\":\"208-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of craniofacial genetics and developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of craniofacial genetics and developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

颅面生长发育包括大小和形状的变化。形状变化可以使用椭圆傅里叶分析等数学方法独立于大小进行评估,这允许通过其轮廓独立于大小,空间方向和与参考平面的关系来对器官形状进行全局评估。根据1 - 18岁的博尔顿标准(侧面视图)对下颌轮廓进行数字化,并使用椭圆傅立叶级数对形状与大小无关的年龄差异进行量化。每个年轻的下颌骨和最老的下颌骨之间的“形态距离”MD(即形状差异的测量)是使用相关的傅立叶系数计算的,就像标准度量测量中的笛卡尔坐标一样。当配置文件相同时,MD等于0。18岁时博尔顿标准与其他所有博尔顿描记之间的MD (Y)与年龄(X)呈显著相关(相关系数r = 0.987, P < or = 0.001)(半对数插值Y = -3.87.log(e) X + 13.593)。18岁时博尔顿标准的大小无关形状与1岁时相关图的差异位于颏部、阴离子、冠突、支前缘。从下颌骨轮廓所包围的区域测量大小差异。1 ~ 18岁时下颌面积(Y)增加约2.58倍(Y = -0.071)。X2 + 4.917。X + 35.904, r = 0.997, P < or = 0.001)。形状效应在很大程度上被非常明显的尺寸增量所掩盖,它只能用适当的数学方法来测量。所开发的方法也可以应用于健康和患病个体的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elliptic Fourier analysis of mandibular shape.

Craniofacial growth and development involve both size and shape variations. Shape variations can be assessed independently from size using mathematical methods such as the elliptic Fourier analysis, which allows a global evaluation of the shape of organs identified by their outlines independently from size, spatial orientation, and relation to reference planes. The mandibular outlines were digitized from the tracings of the Bolton standards (lateral view) from 1 to 18 years of age, and the age differences in shape independently from size were quantified using the elliptic Fourier series. A "morphologic distance" MD (i.e., a measurement of differences in shape) between each younger mandible and the oldest one was computed using the relevant Fourier coefficients like the cartesian coordinates in standard metric measurements. MD equals 0 when the profiles are identical. MD (Y) between the Bolton standard at 18 years of age and all the other Bolton tracings were significantly correlated (correlation coefficient r = 0.987, P < or = 0.001) with age (X) (semi-logarithmic interpolation Y = -3.87.log(e) X + 13.593). Differences between the size-independent shape of the Bolton standard at 18 years and the relevant plot at 1 year were located at the chin, gonion, coronoid process, anterior border of the ramus. Size differences were measured from the areas enclosed by the mandibular outlines. Mandibular area (Y) increased about 2.58 times from 1 to 18 years of age (X) (Y = -0.071.X2 + 4.917.X + 35.904, r = 0.997, P < or = 0.001). The shape effect was largely overwhelmed by the very evident size increments, and it could be measured only using the proper mathematical methods. The method developed could also be applied to the comparison between healthy and diseased individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyaluronan is essential for the expansion of the cranial base growth plates. Vertical regulation of En-2 expression and eye development by FGFs and BMPs. Influences of osteoclast deficiency on craniofacial growth in osteopetrotic (op/op) mice. Merging the old skeletal biology with the new. I. Intramembranous ossification, endochondral ossification, ectopic bone, secondary cartilage, and pathologic considerations. Merging the old skeletal biology with the new. II. Molecular aspects of bone formation and bone growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1