Bcl-2家族蛋白功能和功能障碍在健康和疾病中的机制。

Behring Institute Mitteilungen Pub Date : 1996-10-01
J C Reed
{"title":"Bcl-2家族蛋白功能和功能障碍在健康和疾病中的机制。","authors":"J C Reed","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Bcl-2 protein blocks a distal step in an evolutionarily conserved pathway for programmed cell death and apoptosis. The gene encoding this protein was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in B-cell lymphomas, where it contributes to neoplastic cell expansion by preventing cell turnover due to programmed cell death. Overexpression of BCL-2 also occurs in many other types of human tumors, including cancers of the prostate, colon, and lung, and has been associated with chemoresistance and radioresistance in some types of malignancy. Conversely, expression of BCL-2 is frequently reduced in the circulating lymphocytes of persons infected with Human Immunodeficiency Virus (HIV), which are prone to apoptotic cell death. Since the discovery of Bcl-2 a decade ago, several other cellular and viral genes encoding homologous proteins have been identified, some of which suppress cell death akin to Bcl-2 (Bcl-XL, Mcl-1, A1/Bfl-1, Nr13, Ced-9, BHRF-1) and others which promote apoptosis (Bax, Bcl-Xs, Bak, Bik, Bad). Several of these Bcl-2 family proteins are capable of physically interacting with each other through a complex network of homo- and heterodimers. The expression of some of these other BCL-2 family genes becomes altered in human cancers, as well as in the setting of ischemia and some other pathological conditions, suggesting a potentially important role for these Bcl-2 homologs in human diseases characterized by either insufficient or excessive cell death. Despite intensive investigation, the mechanisms by which Bcl-2 and its homologs control cell life and death largely remain enigmatic. Knowledge about the specific domains in Bcl-2 family proteins that are required for interactions with other proteins and for function however is beginning to provide insights into the molecular mechanisms through which these proteins regulate the programmed cell death pathway in normalcy and disease.</p>","PeriodicalId":8816,"journal":{"name":"Behring Institute Mitteilungen","volume":" 97","pages":"72-100"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Bcl-2 family protein function and dysfunction in health and disease.\",\"authors\":\"J C Reed\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Bcl-2 protein blocks a distal step in an evolutionarily conserved pathway for programmed cell death and apoptosis. The gene encoding this protein was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in B-cell lymphomas, where it contributes to neoplastic cell expansion by preventing cell turnover due to programmed cell death. Overexpression of BCL-2 also occurs in many other types of human tumors, including cancers of the prostate, colon, and lung, and has been associated with chemoresistance and radioresistance in some types of malignancy. Conversely, expression of BCL-2 is frequently reduced in the circulating lymphocytes of persons infected with Human Immunodeficiency Virus (HIV), which are prone to apoptotic cell death. Since the discovery of Bcl-2 a decade ago, several other cellular and viral genes encoding homologous proteins have been identified, some of which suppress cell death akin to Bcl-2 (Bcl-XL, Mcl-1, A1/Bfl-1, Nr13, Ced-9, BHRF-1) and others which promote apoptosis (Bax, Bcl-Xs, Bak, Bik, Bad). Several of these Bcl-2 family proteins are capable of physically interacting with each other through a complex network of homo- and heterodimers. The expression of some of these other BCL-2 family genes becomes altered in human cancers, as well as in the setting of ischemia and some other pathological conditions, suggesting a potentially important role for these Bcl-2 homologs in human diseases characterized by either insufficient or excessive cell death. Despite intensive investigation, the mechanisms by which Bcl-2 and its homologs control cell life and death largely remain enigmatic. Knowledge about the specific domains in Bcl-2 family proteins that are required for interactions with other proteins and for function however is beginning to provide insights into the molecular mechanisms through which these proteins regulate the programmed cell death pathway in normalcy and disease.</p>\",\"PeriodicalId\":8816,\"journal\":{\"name\":\"Behring Institute Mitteilungen\",\"volume\":\" 97\",\"pages\":\"72-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behring Institute Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behring Institute Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bcl-2蛋白阻断了程序性细胞死亡和凋亡的一个进化保守途径的远端步骤。编码该蛋白的基因首次被发现是因为它参与了b细胞淋巴瘤中常见的t(14;18)染色体易位,它通过阻止程序性细胞死亡导致的细胞更新来促进肿瘤细胞的扩张。BCL-2的过表达也发生在许多其他类型的人类肿瘤中,包括前列腺癌、结肠癌和肺癌,并且在某些类型的恶性肿瘤中与化疗耐药和放射耐药有关。相反,在感染人类免疫缺陷病毒(HIV)的人的循环淋巴细胞中,BCL-2的表达经常降低,这容易导致细胞凋亡。自十年前发现Bcl-2以来,已经鉴定了其他几个编码同源蛋白的细胞和病毒基因,其中一些抑制类似于Bcl-2的细胞死亡(Bcl-XL, Mcl-1, A1/Bfl-1, Nr13, ed-9, BHRF-1),另一些促进细胞凋亡(Bax, Bcl-Xs, Bak, Bik, Bad)。这些Bcl-2家族蛋白中的一些能够通过一个复杂的同源和异源二聚体网络相互作用。这些BCL-2家族基因中的一些表达在人类癌症、缺血和其他病理条件下发生改变,表明这些BCL-2同源物在以细胞死亡不足或过度为特征的人类疾病中可能发挥重要作用。尽管深入研究,Bcl-2及其同源物控制细胞生命和死亡的机制在很大程度上仍然是一个谜。然而,对Bcl-2家族蛋白中与其他蛋白相互作用和功能所需的特定结构域的了解,正开始为这些蛋白在正常和疾病中调节程序性细胞死亡途径的分子机制提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of Bcl-2 family protein function and dysfunction in health and disease.

The Bcl-2 protein blocks a distal step in an evolutionarily conserved pathway for programmed cell death and apoptosis. The gene encoding this protein was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in B-cell lymphomas, where it contributes to neoplastic cell expansion by preventing cell turnover due to programmed cell death. Overexpression of BCL-2 also occurs in many other types of human tumors, including cancers of the prostate, colon, and lung, and has been associated with chemoresistance and radioresistance in some types of malignancy. Conversely, expression of BCL-2 is frequently reduced in the circulating lymphocytes of persons infected with Human Immunodeficiency Virus (HIV), which are prone to apoptotic cell death. Since the discovery of Bcl-2 a decade ago, several other cellular and viral genes encoding homologous proteins have been identified, some of which suppress cell death akin to Bcl-2 (Bcl-XL, Mcl-1, A1/Bfl-1, Nr13, Ced-9, BHRF-1) and others which promote apoptosis (Bax, Bcl-Xs, Bak, Bik, Bad). Several of these Bcl-2 family proteins are capable of physically interacting with each other through a complex network of homo- and heterodimers. The expression of some of these other BCL-2 family genes becomes altered in human cancers, as well as in the setting of ischemia and some other pathological conditions, suggesting a potentially important role for these Bcl-2 homologs in human diseases characterized by either insufficient or excessive cell death. Despite intensive investigation, the mechanisms by which Bcl-2 and its homologs control cell life and death largely remain enigmatic. Knowledge about the specific domains in Bcl-2 family proteins that are required for interactions with other proteins and for function however is beginning to provide insights into the molecular mechanisms through which these proteins regulate the programmed cell death pathway in normalcy and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of chemokines and accessory cells in the immunoregulation of cutaneous leishmaniasis. Schistosoma mansoni infection induces a type 1 CD8+ cell response. Malaria sporozoites and chylomicron remnants compete for binding sites in the liver. The role of the cytoskeleton in host cell invasion by Toxoplasma gondii. Reactivation of chronic toxoplasmosis: is there a link to strain-specific differences in the parasite?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1