线粒体介导的细胞损伤

K.B. Wallace , J.T. Eells , V.M.C. Madeira , G. Cortopassi , D.P. Jones
{"title":"线粒体介导的细胞损伤","authors":"K.B. Wallace ,&nbsp;J.T. Eells ,&nbsp;V.M.C. Madeira ,&nbsp;G. Cortopassi ,&nbsp;D.P. Jones","doi":"10.1006/faat.1997.2320","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria have long been known to participate in the process of cell injury associated with metabolic failure. Only recently, however, have we come to appreciate the role of mitochondria as primary intracellular targets in the initiation of cell dysfunction. In addition to ATP synthesis, mitochondria are also critical to modulation of cell redox status, osmotic regulation, pH control, and cytosolic calcium homeostasis and cell signaling. Mitochondria are susceptible to damage by oxidants, electrophiles, and lipophilic cations and weak acids. Chemical-induced mitochondrial dysfunction may be manifested as diverse bioenergetic disorders and considerable effort is required to distinguish between mechanisms involving critical mitochondrial targets and those in which mitochondrial dysfunction is secondary and plays only a modulatory role in cell injury. The following paragraphs review a few important examples of chemical-induced cytotoxic responses that are manifested as interference with mitochondrial metabolism and bioenergetics, gene regulation, or signal transduction in the form of apoptosis and altered cell cycle control. Greater understanding of the molecular mechanisms of mitochondrial bioenergetics, ion regulation, and genetics will lead to numerous additional examples of mitochondria-mediated cell injury, revealing important new insight regarding the prediction, prevention, diagnosis, and treatment of chemical-induced toxic tissue injury.</p></div>","PeriodicalId":100557,"journal":{"name":"Fundamental and Applied Toxicology","volume":"38 1","pages":"Pages 23-37"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/faat.1997.2320","citationCount":"98","resultStr":"{\"title\":\"Mitochondria-Mediated Cell Injury\",\"authors\":\"K.B. Wallace ,&nbsp;J.T. Eells ,&nbsp;V.M.C. Madeira ,&nbsp;G. Cortopassi ,&nbsp;D.P. Jones\",\"doi\":\"10.1006/faat.1997.2320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria have long been known to participate in the process of cell injury associated with metabolic failure. Only recently, however, have we come to appreciate the role of mitochondria as primary intracellular targets in the initiation of cell dysfunction. In addition to ATP synthesis, mitochondria are also critical to modulation of cell redox status, osmotic regulation, pH control, and cytosolic calcium homeostasis and cell signaling. Mitochondria are susceptible to damage by oxidants, electrophiles, and lipophilic cations and weak acids. Chemical-induced mitochondrial dysfunction may be manifested as diverse bioenergetic disorders and considerable effort is required to distinguish between mechanisms involving critical mitochondrial targets and those in which mitochondrial dysfunction is secondary and plays only a modulatory role in cell injury. The following paragraphs review a few important examples of chemical-induced cytotoxic responses that are manifested as interference with mitochondrial metabolism and bioenergetics, gene regulation, or signal transduction in the form of apoptosis and altered cell cycle control. Greater understanding of the molecular mechanisms of mitochondrial bioenergetics, ion regulation, and genetics will lead to numerous additional examples of mitochondria-mediated cell injury, revealing important new insight regarding the prediction, prevention, diagnosis, and treatment of chemical-induced toxic tissue injury.</p></div>\",\"PeriodicalId\":100557,\"journal\":{\"name\":\"Fundamental and Applied Toxicology\",\"volume\":\"38 1\",\"pages\":\"Pages 23-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/faat.1997.2320\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental and Applied Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272059097923204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and Applied Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272059097923204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

人们早就知道线粒体参与了与代谢衰竭相关的细胞损伤过程。然而,直到最近,我们才开始认识到线粒体在细胞功能障碍启动过程中作为主要细胞内靶点的作用。除了ATP合成外,线粒体在调节细胞氧化还原状态、渗透调节、pH控制、胞质钙稳态和细胞信号传导方面也起着关键作用。线粒体容易受到氧化剂、亲电试剂、亲脂阳离子和弱酸的损害。化学诱导的线粒体功能障碍可能表现为多种生物能量紊乱,需要相当大的努力来区分涉及关键线粒体靶点的机制和那些线粒体功能障碍是次要的,仅在细胞损伤中起调节作用的机制。以下几段回顾了化学诱导的细胞毒性反应的几个重要例子,这些反应表现为对线粒体代谢和生物能量学、基因调控或信号转导的干扰,其形式是凋亡和细胞周期控制的改变。对线粒体生物能量学、离子调节和遗传学的分子机制的深入了解将导致线粒体介导的细胞损伤的许多其他例子,揭示有关化学诱导的毒性组织损伤的预测、预防、诊断和治疗的重要新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitochondria-Mediated Cell Injury

Mitochondria have long been known to participate in the process of cell injury associated with metabolic failure. Only recently, however, have we come to appreciate the role of mitochondria as primary intracellular targets in the initiation of cell dysfunction. In addition to ATP synthesis, mitochondria are also critical to modulation of cell redox status, osmotic regulation, pH control, and cytosolic calcium homeostasis and cell signaling. Mitochondria are susceptible to damage by oxidants, electrophiles, and lipophilic cations and weak acids. Chemical-induced mitochondrial dysfunction may be manifested as diverse bioenergetic disorders and considerable effort is required to distinguish between mechanisms involving critical mitochondrial targets and those in which mitochondrial dysfunction is secondary and plays only a modulatory role in cell injury. The following paragraphs review a few important examples of chemical-induced cytotoxic responses that are manifested as interference with mitochondrial metabolism and bioenergetics, gene regulation, or signal transduction in the form of apoptosis and altered cell cycle control. Greater understanding of the molecular mechanisms of mitochondrial bioenergetics, ion regulation, and genetics will lead to numerous additional examples of mitochondria-mediated cell injury, revealing important new insight regarding the prediction, prevention, diagnosis, and treatment of chemical-induced toxic tissue injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rat Olfactory Mucosa Displays a High Activity in Metabolizing Methyltert-butyl Ether and Other Gasoline Ethers Assessment of Respiratory Hypersensitivity in Guinea Pigs Sensitized to Toluene Diisocyanate: Improvements on Analysis of Respiratory Response Intratracheal Inhalation vs Intratracheal Instillation: Differences in Particle Effects Differences in Caffeine 3-Demethylation Activity among Inbred Mouse Strains: A Comparison of HepaticCyp1a2Gene Expression between Two Inbred Strains Ketoconazole Impairs Early Pregnancy and the Decidual Cell Response via Alterations in Ovarian Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1