水pH和钙浓度对亚马逊河内格罗河鱼类离子平衡的影响。

R J Gonzalez, C M Wood, R W Wilson, M L Patrick, H L Bergman, A Narahara, A L Val
{"title":"水pH和钙浓度对亚马逊河内格罗河鱼类离子平衡的影响。","authors":"R J Gonzalez,&nbsp;C M Wood,&nbsp;R W Wilson,&nbsp;M L Patrick,&nbsp;H L Bergman,&nbsp;A Narahara,&nbsp;A L Val","doi":"10.1086/515893","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the effects of acute low-pH exposure on ion balance (Na+, Cl-, K+) in several species of fish captured from the Rio Negro, a dilute, acidic tributary of the Amazon. At pH 5.5 (untreated Rio Negro water), the four Rio Negro species tested (piranha preta, Serrasalmus rhombeus; piranha branca, Serrasalmus cf. holandi; aracu, Leporinus fasciatus; and pacu, Myleus sp.) were at or near ion balance; upon exposure to pH 3.5, while Na+ and Cl- loss rates became significant, they were relatively mild. In comparison, tambaqui (Colossoma macropomum), which were obtained from aquaculture and held and tested under the same conditions as the other fish, had loss rates seven times higher than all the Rio Negro species. At pH 3.0, rates of Na+ and Cl- loss for the Rio Negro fish increased three- to fivefold but were again much less than those observed in tambaqui. Raising water Ca2+ concentration from 10 micromol L-1 to 100 micromol L-1 during exposure to the same low pH's had no effect on rates of ion loss in the three species tested (piranha preta, piranha branca, aracu), which suggests that either they have such a high branchial affinity for Ca2+ that all sites are saturated at 10 micromol L-1 and additional Ca2+ had no effect, or that Ca2+ may not be involved in regulation of branchial ion permeability. For a final Rio Negro species, the cardinal tetra (Paracheirodon axelrodi), we monitored body Na+ concentration during 5 d of exposure to pH 6.0, 4.0, or 3.5. These pH's had no effect on body Na+ concentration. These data together suggest that exceptional acid tolerance is a general characteristic of fish that inhabit the dilute acidic Rio Negro and raise questions about the role of Ca2+ in regulation of branchial ion permeability in these fish.</p>","PeriodicalId":79527,"journal":{"name":"Physiological zoology","volume":"71 1","pages":"15-22"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/515893","citationCount":"94","resultStr":"{\"title\":\"Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon.\",\"authors\":\"R J Gonzalez,&nbsp;C M Wood,&nbsp;R W Wilson,&nbsp;M L Patrick,&nbsp;H L Bergman,&nbsp;A Narahara,&nbsp;A L Val\",\"doi\":\"10.1086/515893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the effects of acute low-pH exposure on ion balance (Na+, Cl-, K+) in several species of fish captured from the Rio Negro, a dilute, acidic tributary of the Amazon. At pH 5.5 (untreated Rio Negro water), the four Rio Negro species tested (piranha preta, Serrasalmus rhombeus; piranha branca, Serrasalmus cf. holandi; aracu, Leporinus fasciatus; and pacu, Myleus sp.) were at or near ion balance; upon exposure to pH 3.5, while Na+ and Cl- loss rates became significant, they were relatively mild. In comparison, tambaqui (Colossoma macropomum), which were obtained from aquaculture and held and tested under the same conditions as the other fish, had loss rates seven times higher than all the Rio Negro species. At pH 3.0, rates of Na+ and Cl- loss for the Rio Negro fish increased three- to fivefold but were again much less than those observed in tambaqui. Raising water Ca2+ concentration from 10 micromol L-1 to 100 micromol L-1 during exposure to the same low pH's had no effect on rates of ion loss in the three species tested (piranha preta, piranha branca, aracu), which suggests that either they have such a high branchial affinity for Ca2+ that all sites are saturated at 10 micromol L-1 and additional Ca2+ had no effect, or that Ca2+ may not be involved in regulation of branchial ion permeability. For a final Rio Negro species, the cardinal tetra (Paracheirodon axelrodi), we monitored body Na+ concentration during 5 d of exposure to pH 6.0, 4.0, or 3.5. These pH's had no effect on body Na+ concentration. These data together suggest that exceptional acid tolerance is a general characteristic of fish that inhabit the dilute acidic Rio Negro and raise questions about the role of Ca2+ in regulation of branchial ion permeability in these fish.</p>\",\"PeriodicalId\":79527,\"journal\":{\"name\":\"Physiological zoology\",\"volume\":\"71 1\",\"pages\":\"15-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/515893\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological zoology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/515893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological zoology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/515893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

我们研究了急性低ph暴露对从里约内格罗捕获的几种鱼类的离子平衡(Na+, Cl-, K+)的影响,这是亚马逊河的一条稀释的酸性支流。在pH值为5.5(未经处理的里约内格罗水)的情况下,测试了四种里约内格罗物种(食人鱼、菱形鱼;水虎鱼科(Serrasalmus cfh . holandi);aracu,狐猴;pacu, Myleus sp)处于或接近离子平衡;当pH值为3.5时,Na+和Cl-的损失率变得明显,但相对较轻。相比之下,从水产养殖中获得并在与其他鱼类相同的条件下饲养和测试的tambaqui (Colossoma macropomum)的损失率比所有Rio Negro物种高7倍。在pH值为3.0时,里奥内格罗鱼的Na+和Cl-损失率增加了三到五倍,但比在坦巴基观察到的要少得多。在暴露于相同的低pH条件下,将水中Ca2+浓度从10微摩尔L-1提高到100微摩尔L-1,对三种被测试物种(食人鱼,食人鱼,食人鱼)的离子损流率没有影响,这表明它们对Ca2+具有如此高的鳃亲和力,所有部位在10微摩尔L-1下饱和,额外的Ca2+没有影响,或者Ca2+可能不参与调节鳃离子通透性。对于里约内格罗的最后一个物种,枢机四虎(Paracheirodon axelrodi),我们在暴露于pH 6.0, 4.0或3.5的5天内监测了体内Na+浓度。这些pH值对体内Na+浓度没有影响。这些数据共同表明,特殊的酸耐受性是鱼类的普遍特征,生活在稀酸性的里奥内格罗,并提出了Ca2+在这些鱼的鳃离子通透性调节中的作用的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon.

We examined the effects of acute low-pH exposure on ion balance (Na+, Cl-, K+) in several species of fish captured from the Rio Negro, a dilute, acidic tributary of the Amazon. At pH 5.5 (untreated Rio Negro water), the four Rio Negro species tested (piranha preta, Serrasalmus rhombeus; piranha branca, Serrasalmus cf. holandi; aracu, Leporinus fasciatus; and pacu, Myleus sp.) were at or near ion balance; upon exposure to pH 3.5, while Na+ and Cl- loss rates became significant, they were relatively mild. In comparison, tambaqui (Colossoma macropomum), which were obtained from aquaculture and held and tested under the same conditions as the other fish, had loss rates seven times higher than all the Rio Negro species. At pH 3.0, rates of Na+ and Cl- loss for the Rio Negro fish increased three- to fivefold but were again much less than those observed in tambaqui. Raising water Ca2+ concentration from 10 micromol L-1 to 100 micromol L-1 during exposure to the same low pH's had no effect on rates of ion loss in the three species tested (piranha preta, piranha branca, aracu), which suggests that either they have such a high branchial affinity for Ca2+ that all sites are saturated at 10 micromol L-1 and additional Ca2+ had no effect, or that Ca2+ may not be involved in regulation of branchial ion permeability. For a final Rio Negro species, the cardinal tetra (Paracheirodon axelrodi), we monitored body Na+ concentration during 5 d of exposure to pH 6.0, 4.0, or 3.5. These pH's had no effect on body Na+ concentration. These data together suggest that exceptional acid tolerance is a general characteristic of fish that inhabit the dilute acidic Rio Negro and raise questions about the role of Ca2+ in regulation of branchial ion permeability in these fish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network States in the Basolateral Amygdala Predicts Voluntary Alcohol Consumption. Autoantibodies and Cancer Association: the Case of Systemic Sclerosis and Dermatomyositis. Translational Brain Mapping at the University of Rochester Medical Center: Preserving the Mind Through Personalized Brain Mapping. Regulation of the Hsp90-binding immunophilin, cyclophilin 40, is mediated by multiple sites for GA-binding protein (GABP). Ecological and evolutionary implications of energy and protein requirements of avian frugivores eating sugary diets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1