Garry W Buchko , Annett Rozek , David W. Hoyt , Robert J Cushley , Michael A Kennedy
{"title":"使用十二烷基硫酸钠模拟载脂蛋白环境。使用脉冲场梯度核磁共振波谱分析肽- sds复合物的证据","authors":"Garry W Buchko , Annett Rozek , David W. Hoyt , Robert J Cushley , Michael A Kennedy","doi":"10.1016/S0005-2760(98)00028-9","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed-field-gradient NMR spectroscopy was used to measure translational diffusion coefficients (<em>D</em><sub>s</sub>) for a peptide corresponding to a proposed lipid-binding domain of human apolipoprotein C-I, residues 7–24 (apoC-I(7–24)). Diffusion coefficients for apoC-I(7–24) were determined directly by following the decay of the resonance intensity of selected peptide protons at various concentrations of sodium dodecyl sulfate (SDS), a detergent increasingly being used to model the apolipoprotein environment. Previously, diffusion coefficients of peptides in the presence of SDS have been determined indirectly by monitoring the SDS diffusion coefficient. The direct measurement of the diffusion coefficient of the peptide enables one to distinguish whether SDS simply coats the peptide's surface to produce a uniformly charged `rod' or if the peptide associates with a micelle. Using the direct method, at SDS concentrations above 5 mM (which is below the SDS critical micelle concentration (8.1 mM)), apoC-I(7–24) exhibited diffusion coefficients consistent with the formation of a large-molecular-weight complex. Based on the ratio of the diffusion coefficients for free- and SDS-associated peptide, the molecular weight of the peptide–SDS complex was much larger than a factor of 1.4, the increase in molecular weight of the free peptide predicted if apoC-I(7–24) was uniformly surface coated with SDS.</p></div>","PeriodicalId":100162,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","volume":"1392 1","pages":"Pages 101-108"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00028-9","citationCount":"30","resultStr":"{\"title\":\"The use of sodium dodecyl sulfate to model the apolipoprotein environment. Evidence for peptide–SDS complexes using pulsed-field-gradient NMR spectroscopy\",\"authors\":\"Garry W Buchko , Annett Rozek , David W. Hoyt , Robert J Cushley , Michael A Kennedy\",\"doi\":\"10.1016/S0005-2760(98)00028-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulsed-field-gradient NMR spectroscopy was used to measure translational diffusion coefficients (<em>D</em><sub>s</sub>) for a peptide corresponding to a proposed lipid-binding domain of human apolipoprotein C-I, residues 7–24 (apoC-I(7–24)). Diffusion coefficients for apoC-I(7–24) were determined directly by following the decay of the resonance intensity of selected peptide protons at various concentrations of sodium dodecyl sulfate (SDS), a detergent increasingly being used to model the apolipoprotein environment. Previously, diffusion coefficients of peptides in the presence of SDS have been determined indirectly by monitoring the SDS diffusion coefficient. The direct measurement of the diffusion coefficient of the peptide enables one to distinguish whether SDS simply coats the peptide's surface to produce a uniformly charged `rod' or if the peptide associates with a micelle. Using the direct method, at SDS concentrations above 5 mM (which is below the SDS critical micelle concentration (8.1 mM)), apoC-I(7–24) exhibited diffusion coefficients consistent with the formation of a large-molecular-weight complex. Based on the ratio of the diffusion coefficients for free- and SDS-associated peptide, the molecular weight of the peptide–SDS complex was much larger than a factor of 1.4, the increase in molecular weight of the free peptide predicted if apoC-I(7–24) was uniformly surface coated with SDS.</p></div>\",\"PeriodicalId\":100162,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism\",\"volume\":\"1392 1\",\"pages\":\"Pages 101-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00028-9\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005276098000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005276098000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of sodium dodecyl sulfate to model the apolipoprotein environment. Evidence for peptide–SDS complexes using pulsed-field-gradient NMR spectroscopy
Pulsed-field-gradient NMR spectroscopy was used to measure translational diffusion coefficients (Ds) for a peptide corresponding to a proposed lipid-binding domain of human apolipoprotein C-I, residues 7–24 (apoC-I(7–24)). Diffusion coefficients for apoC-I(7–24) were determined directly by following the decay of the resonance intensity of selected peptide protons at various concentrations of sodium dodecyl sulfate (SDS), a detergent increasingly being used to model the apolipoprotein environment. Previously, diffusion coefficients of peptides in the presence of SDS have been determined indirectly by monitoring the SDS diffusion coefficient. The direct measurement of the diffusion coefficient of the peptide enables one to distinguish whether SDS simply coats the peptide's surface to produce a uniformly charged `rod' or if the peptide associates with a micelle. Using the direct method, at SDS concentrations above 5 mM (which is below the SDS critical micelle concentration (8.1 mM)), apoC-I(7–24) exhibited diffusion coefficients consistent with the formation of a large-molecular-weight complex. Based on the ratio of the diffusion coefficients for free- and SDS-associated peptide, the molecular weight of the peptide–SDS complex was much larger than a factor of 1.4, the increase in molecular weight of the free peptide predicted if apoC-I(7–24) was uniformly surface coated with SDS.