{"title":"GM2激活蛋白,其作为GM2水解的辅助因子和一般糖脂转运蛋白的作用","authors":"Don J Mahuran","doi":"10.1016/S0005-2760(98)00057-5","DOIUrl":null,"url":null,"abstract":"<div><p>Although there is only one documented function carried out by the GM2 activator protein in the lysosome, new information suggests that other less obvious roles may also be played by this protein in vivo. This information includes data demonstrating that the GM2 activator is a secretory, as well as a lysosomal protein, and that cells possess a carbohydrate-independent mechanism to re-capture the activator, with or without bound lipid, from the extracellular fluid. Additionally the GM2 activator has been shown to bind, solubilize and transport a broad spectrum of lipid molecules, such as glycolipids, gangliosides and at least one phosphoacylglycerol, between liposomes. At pH 7 the GM2 activator’s rate of lipid transport is reduced by only 50% from its maximum rate which is achieved at approx. pH 5, suggesting that the GM2 activator may serve as a general intra- and/or inter-cellular lipid transport protein in vivo. Since the late 1970s the lysosomal form of the GM2 activator has been known to act as a substrate-specific co-factor for the hydrolysis of GM2 ganglioside by β-hexosaminidase A. Gangliosides are a class of negatively charged glycolipids particularly abundant in neuronal cells which have been linked to numerous in vivo functions, such as memory formation and signal transduction events. Deficiency of the GM2 activator protein results in the storage of GM2 ganglioside and severe neurological disease, the AB-variant form of GM2 gangliosidosis, usually culminating in death before the age of 4 years. The exact mode-of-action of the GM2 activator in its role as a co-factor, and its specificity for various glycolipids are currently matters of debate in the literature.</p></div>","PeriodicalId":100162,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00057-5","citationCount":"69","resultStr":"{\"title\":\"The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein\",\"authors\":\"Don J Mahuran\",\"doi\":\"10.1016/S0005-2760(98)00057-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although there is only one documented function carried out by the GM2 activator protein in the lysosome, new information suggests that other less obvious roles may also be played by this protein in vivo. This information includes data demonstrating that the GM2 activator is a secretory, as well as a lysosomal protein, and that cells possess a carbohydrate-independent mechanism to re-capture the activator, with or without bound lipid, from the extracellular fluid. Additionally the GM2 activator has been shown to bind, solubilize and transport a broad spectrum of lipid molecules, such as glycolipids, gangliosides and at least one phosphoacylglycerol, between liposomes. At pH 7 the GM2 activator’s rate of lipid transport is reduced by only 50% from its maximum rate which is achieved at approx. pH 5, suggesting that the GM2 activator may serve as a general intra- and/or inter-cellular lipid transport protein in vivo. Since the late 1970s the lysosomal form of the GM2 activator has been known to act as a substrate-specific co-factor for the hydrolysis of GM2 ganglioside by β-hexosaminidase A. Gangliosides are a class of negatively charged glycolipids particularly abundant in neuronal cells which have been linked to numerous in vivo functions, such as memory formation and signal transduction events. Deficiency of the GM2 activator protein results in the storage of GM2 ganglioside and severe neurological disease, the AB-variant form of GM2 gangliosidosis, usually culminating in death before the age of 4 years. The exact mode-of-action of the GM2 activator in its role as a co-factor, and its specificity for various glycolipids are currently matters of debate in the literature.</p></div>\",\"PeriodicalId\":100162,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00057-5\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005276098000575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005276098000575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein
Although there is only one documented function carried out by the GM2 activator protein in the lysosome, new information suggests that other less obvious roles may also be played by this protein in vivo. This information includes data demonstrating that the GM2 activator is a secretory, as well as a lysosomal protein, and that cells possess a carbohydrate-independent mechanism to re-capture the activator, with or without bound lipid, from the extracellular fluid. Additionally the GM2 activator has been shown to bind, solubilize and transport a broad spectrum of lipid molecules, such as glycolipids, gangliosides and at least one phosphoacylglycerol, between liposomes. At pH 7 the GM2 activator’s rate of lipid transport is reduced by only 50% from its maximum rate which is achieved at approx. pH 5, suggesting that the GM2 activator may serve as a general intra- and/or inter-cellular lipid transport protein in vivo. Since the late 1970s the lysosomal form of the GM2 activator has been known to act as a substrate-specific co-factor for the hydrolysis of GM2 ganglioside by β-hexosaminidase A. Gangliosides are a class of negatively charged glycolipids particularly abundant in neuronal cells which have been linked to numerous in vivo functions, such as memory formation and signal transduction events. Deficiency of the GM2 activator protein results in the storage of GM2 ganglioside and severe neurological disease, the AB-variant form of GM2 gangliosidosis, usually culminating in death before the age of 4 years. The exact mode-of-action of the GM2 activator in its role as a co-factor, and its specificity for various glycolipids are currently matters of debate in the literature.