{"title":"疼痛的神经生理学评估","authors":"Burkhart Bromm, Jürgen Lorenz","doi":"10.1016/S0013-4694(98)00075-3","DOIUrl":null,"url":null,"abstract":"<div><p>Neurophysiological techniques for the evaluation of pain in humans have made important advances in the last decade. A number of features of neuroanatomy and physiology of nociception qualifies pain as a multidimensional phenomenon which is rather unique among the sensory systems and which poses a number of technical and procedural requirements for its appropriate diagnostic assessment. Various stimulation techniques to induce defined pain in humans and used in combination with the methodology of evoked electrical brain potentials and magnetic fields are presented. Most recent knowledge gathered from scalp topography and dipole source analysis of pain-relevant evoked potentials and fields is discussed. Particular emphasis is put upon laser-evoked potentials and their application for diagnosis, pathophysiological description and monitoring of patients with neurological disorders and abnormal pain states. Future perspectives in this growing field of research are discussed briefly.</p></div>","PeriodicalId":72888,"journal":{"name":"Electroencephalography and clinical neurophysiology","volume":"107 4","pages":"Pages 227-253"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0013-4694(98)00075-3","citationCount":"418","resultStr":"{\"title\":\"Neurophysiological evaluation of pain\",\"authors\":\"Burkhart Bromm, Jürgen Lorenz\",\"doi\":\"10.1016/S0013-4694(98)00075-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurophysiological techniques for the evaluation of pain in humans have made important advances in the last decade. A number of features of neuroanatomy and physiology of nociception qualifies pain as a multidimensional phenomenon which is rather unique among the sensory systems and which poses a number of technical and procedural requirements for its appropriate diagnostic assessment. Various stimulation techniques to induce defined pain in humans and used in combination with the methodology of evoked electrical brain potentials and magnetic fields are presented. Most recent knowledge gathered from scalp topography and dipole source analysis of pain-relevant evoked potentials and fields is discussed. Particular emphasis is put upon laser-evoked potentials and their application for diagnosis, pathophysiological description and monitoring of patients with neurological disorders and abnormal pain states. Future perspectives in this growing field of research are discussed briefly.</p></div>\",\"PeriodicalId\":72888,\"journal\":{\"name\":\"Electroencephalography and clinical neurophysiology\",\"volume\":\"107 4\",\"pages\":\"Pages 227-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0013-4694(98)00075-3\",\"citationCount\":\"418\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and clinical neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013469498000753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and clinical neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013469498000753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurophysiological techniques for the evaluation of pain in humans have made important advances in the last decade. A number of features of neuroanatomy and physiology of nociception qualifies pain as a multidimensional phenomenon which is rather unique among the sensory systems and which poses a number of technical and procedural requirements for its appropriate diagnostic assessment. Various stimulation techniques to induce defined pain in humans and used in combination with the methodology of evoked electrical brain potentials and magnetic fields are presented. Most recent knowledge gathered from scalp topography and dipole source analysis of pain-relevant evoked potentials and fields is discussed. Particular emphasis is put upon laser-evoked potentials and their application for diagnosis, pathophysiological description and monitoring of patients with neurological disorders and abnormal pain states. Future perspectives in this growing field of research are discussed briefly.